Skip to main content

Computational Modeling of Multi-target-Directed Inhibitors Against Alzheimer’s Disease

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

Alzheimer’s disease is a neurodegenerative disorder mostly occurring in the elderly. The socioeconomic impact and death rate due to AD are alarming. Thus, one target-one ligand hypothesis which is successful in drug discovery may not be suitable for multifactorial diseases like AD. Recently, researchers have successfully identified dual- or multi-target inhibitors which halt multiple disease-causing pathways and improve the disease conditions. Computational methods such as virtual screening, docking, QSAR, molecular dynamics, etc., are helpful tools to design and identify new MTDL entities. We have described various computational methods to screen and identify top hits and molecular dynamics to ensure the affinity in terms of binding free energy of the receptor ligand complex to design multi-target-directed ligands for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5:101–108

    PubMed  PubMed Central  Google Scholar 

  2. Lautenschlager NT, Martins RN (2005) Common versus uncommon causes of dementia. Int Psychogeriatr/IPA 17(Suppl 1):S27–S34

    Article  Google Scholar 

  3. 2016 Alzheimer’s disease facts and figures. http://www.sciencedirect.com/science/article/pii/S1552526016000856

  4. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science (New York, NY) 314:777–781

    Article  CAS  Google Scholar 

  5. Jellinger KA (2003) General aspects of neurodegeneration. J Neural Transm Suppl 65:101–144

    Google Scholar 

  6. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  7. BABIC T, FRANCIS P, PALMER A et al (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 67:558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35:1397–1409

    Article  CAS  PubMed  Google Scholar 

  9. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Praticò D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615

    Article  PubMed  CAS  Google Scholar 

  11. Bonda DJ, Lee H, Blair JA et al (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics Integr Biometal Sci 3:267–270

    Article  CAS  Google Scholar 

  12. Trepanier CH, Milgram NW (2010) Neuroinflammation in Alzheimer’s disease: are NSAIDs and selective COX-2 inhibitors the next line of therapy? J Alzheimers Dis JAD 21:1089–1099

    Article  CAS  PubMed  Google Scholar 

  13. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (New York, NY) 297:353–356

    Article  CAS  Google Scholar 

  14. Hamaguchi T, Ono K, Yamada M (2006) Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell Mol Life Sci 63:1538–1552

    Article  CAS  PubMed  Google Scholar 

  15. Chang Y-J, Chen Y-R (2014) The coexistence of an equal amount of Alzheimer’s amyloid-β 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway. FEBS J 281:2674–2687

    Article  CAS  PubMed  Google Scholar 

  16. Jan A, Gokce O, Luthi-Carter R et al (2008) The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 283:28176–28189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 54:77–95

    Article  CAS  PubMed  Google Scholar 

  18. Vassallo N (ed) (2015) Natural compounds as therapeutic agents for Amyloidogenic diseases. Springer International Publishing, Cham

    Google Scholar 

  19. Kumar P, Pillay V, Choonara YE et al (2011) In silico theoretical molecular modeling for Alzheimer’s disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int J Mol Sci 12:694–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nie Q, Du X, Geng M (2011) Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin 32:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar A, Srivastava S, Tripathi S et al (2015) Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. J Biomol Struct Dyn 0:1–12

    Article  CAS  Google Scholar 

  22. Verma A, Kumar A, Debnath M (2016) Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils. Med Chem Res 25:1–7

    Google Scholar 

  23. Singh SK, Sinha P, Mishra L et al (2013) Neuroprotective role of a novel copper Chelator against Aβ42 induced neurotoxicity. Int J Alzheimers Dis 2013:567128

    PubMed  PubMed Central  Google Scholar 

  24. Singh SK, Gaur R, Kumar A et al (2014) The flavonoid derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies. Neurotox Res 26:331–350

    Article  CAS  PubMed  Google Scholar 

  25. Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1:279–286

    Article  CAS  PubMed  Google Scholar 

  26. Iqbal K, del C. Alonso A, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta (BBA) - Mol Basis Dis 1739:198–210

    Article  CAS  Google Scholar 

  27. Chun W, Johnson GVW (2007) The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci 12:733–756

    Article  CAS  PubMed  Google Scholar 

  28. Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197

    Article  CAS  PubMed  Google Scholar 

  29. França MB, Lima KC, Eleutherio ECA (2016) Oxidative stress and amyloid toxicity: insights from yeast. J Cell Biochem 118:1142

    Google Scholar 

  30. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82

    Article  CAS  PubMed  Google Scholar 

  31. Cristóvão JS, Santos R, Gomes CM (2016) Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxidative Med Cell Longev 2016:9812178

    Article  Google Scholar 

  32. Kenche VB, Barnham KJ (2011) Alzheimer’s disease & metals: therapeutic opportunities. Br J Pharmacol 163:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Killin LOJ, Starr JM, Shiue IJ et al (2016) Environmental risk factors for dementia: a systematic review. BMC Geriatr 16:175

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future, neuropharmacology. Neuropharmacology 76 Pt A:27–50

    Google Scholar 

  35. Youdim MBH, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    Article  CAS  PubMed  Google Scholar 

  36. Rosini M (2014) Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem 6:485–487

    Article  CAS  PubMed  Google Scholar 

  37. Boran ADW, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bolognesi ML, Melchiorre C, der Schyf CJV, et al (2012) Chapter 18: discovery of multi-target agents for neurological diseases via ligand design, Presented at the March 28

    Google Scholar 

  39. Klotz U (2007) The elderly—a challenge for appropriate drug treatment. Eur J Clin Pharmacol 64:225–226

    Article  Google Scholar 

  40. Evans BE, Rittle KE, Bock MG et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  CAS  PubMed  Google Scholar 

  41. Hu Y, Bajorath J (2013) How promiscuous are pharmaceutically relevant compounds? A data-driven assessment. AAPS J 15:104–111

    Article  CAS  PubMed  Google Scholar 

  42. Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morphy R (2010) Selectively nonselective kinase inhibition: striking the right balance. J Med Chem 53:1413–1437

    Article  CAS  PubMed  Google Scholar 

  44. Millan MJ (2009) Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics J Am Soc Exp NeuroTherapeutics 6:53–77

    Article  CAS  Google Scholar 

  45. Zeng H, Wu X (2016) Alzheimer’s disease drug development based on computer-aided drug design. Eur J Med Chem 121:851

    Article  CAS  PubMed  Google Scholar 

  46. Cavalli A, Bolognesi ML, Minarini A et al (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt B, Bernhardt T, Moeller H-J et al (2004) Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs 18:827–844

    Article  CAS  PubMed  Google Scholar 

  48. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  49. Yildirim MA, Goh K-I, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  CAS  PubMed  Google Scholar 

  50. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887

    Article  CAS  PubMed  Google Scholar 

  51. Peters J-U (2013) Polypharmacology - foe or friend? J Med Chem 56:8955–8971

    Article  CAS  PubMed  Google Scholar 

  52. Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14:759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47

    Google Scholar 

  54. Oprea TI, Nielsen SK, Ursu O et al (2011) Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inf 30:100–111

    Article  CAS  Google Scholar 

  55. Achenbach J, Tiikkainen P, Franke L et al (2011) Computational tools for polypharmacology and repurposing. Future Med Chem 3:961–968

    Article  CAS  PubMed  Google Scholar 

  56. Durrant JD, Amaro RE, Xie L et al (2010) A multidimensional strategy to detect Polypharmacological targets in the absence of structural and sequence homology. PLoS Comput Biol 6:e1000648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Miller G (2010) Is pharma running out of brainy ideas? Science (New York, NY) 329:502–504

    Article  CAS  Google Scholar 

  58. Berger JR, Choi D, Kaminski HJ et al (2013) Importance and hurdles to drug discovery for neurological disease. Ann Neurol 74:441–446

    Article  CAS  PubMed  Google Scholar 

  59. Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10:428–438

    Article  CAS  PubMed  Google Scholar 

  60. Jorgensen WL (2004) The many roles of computation in drug discovery. Science (New York, NY) 303:1813–1818

    Article  CAS  Google Scholar 

  61. Owens J (2007) Determining druggability. Nat Rev Drug Discov 6:187–187

    Article  CAS  Google Scholar 

  62. Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75

    Article  PubMed  CAS  Google Scholar 

  63. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  64. Dixon SJ, Stockwell BR (2009) Identifying druggable disease-modifying gene products. Curr Opin Chem Biol 13:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silva T, Reis J, Teixeira J et al (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145

    Article  CAS  PubMed  Google Scholar 

  66. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50

    Article  CAS  PubMed  Google Scholar 

  67. Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  PubMed  Google Scholar 

  69. Huang L, Su T, Li X (2013) Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Curr Top Med Chem 13:1864–1878

    Article  CAS  PubMed  Google Scholar 

  70. Williams P, Sorribas A, Howes M-JR (2011) Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep 28:48–77

    Article  CAS  PubMed  Google Scholar 

  71. McLaurin J, Kierstead ME, Brown ME et al (2006) Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 12:801–808

    Article  CAS  PubMed  Google Scholar 

  72. Popik P, Bobula B, Janusz M et al (1999) Colostrinin, a polypeptide isolated from early milk, facilitates learning and memory in rats. Pharmacol Biochem Behav 64:183–189

    Article  CAS  PubMed  Google Scholar 

  73. Forloni G, Colombo L, Girola L et al (2001) Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 487:404–407

    Article  CAS  PubMed  Google Scholar 

  74. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  75. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124

    Article  CAS  Google Scholar 

  76. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sterling T, Irwin JJ (2015) ZINC 15 – ligand discovery for everyone. J Chem Inf Model 55:2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen CY-C (2011) TCM database@Taiwan: the World’s largest traditional Chinese medicine database for drug screening in Silico. PLoS One 6:e15939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Banerjee P, Erehman J, Gohlke B-O et al (2015) Super natural II—a database of natural products. Nucleic Acids Res 43:D935–D939

    Article  CAS  PubMed  Google Scholar 

  80. Ntie-Kang F, Zofou D, Babiaka SB et al (2013) AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS One 8:e78085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin Y-C, Wang C-C, Chen I-S et al (2013) TIPdb: a database of anticancer, antiplatelet, and Antituberculosis phytochemicals from indigenous plants in Taiwan. Sci World J 2013:e736386

    Google Scholar 

  82. Gu J, Gui Y, Chen L et al (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 8:e62839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Valli M, dos Santos RN, Figueira LD et al (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76:439–444

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura K, Shimura N, Otabe Y et al (2013) KNApSAcK-3D: a three-dimensional structure database of plant metabolites. Plant Cell Physiol 54:e4

    Article  CAS  PubMed  Google Scholar 

  85. Maeda MH, Kondo K (2013) Three-dimensional structure database of natural metabolites (3DMET): a novel database of curated 3D structures. J Chem Inf Model 53:527–533

    Article  CAS  PubMed  Google Scholar 

  86. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Christofferson AJ, Huang N (2012) How to benchmark methods for structure-based virtual screening of large compound libraries. Methods Mol Biol (Clifton, NJ) 819:187–195

    Article  CAS  Google Scholar 

  88. Xia J, Jin H, Liu Z et al (2014) An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs. J Chem Inf Model 54:1433–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lagarde N, Zagury J-F, Montes M (2015) Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives. J Chem Inf Model 55:1297–1307

    Article  CAS  PubMed  Google Scholar 

  90. Evers A, Hessler G, Matter H et al (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48:5448–5465

    Article  CAS  PubMed  Google Scholar 

  91. Ferrari AM, Wei BQ, Costantino L et al (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang F, Kim SH (1991) “soft docking”: matching of molecular surface cubes. J Mol Biol 219:79–102

    Article  CAS  PubMed  Google Scholar 

  93. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860

    Article  CAS  PubMed  Google Scholar 

  94. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. López-Vallejo F, Caulfield T, Martínez-Mayorga K et al (2011) Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen 14:475–487

    Article  PubMed  Google Scholar 

  96. Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  PubMed  Google Scholar 

  98. Cozzini P, Kellogg GE, Spyrakis F et al (2008) Target flexibility. J Med Chem 51:6237–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Apostolakis J, Plückthun A, Caflisch A (1998) Docking small ligands in flexible binding sites. J Comput Chem 19:21–37

    Article  CAS  Google Scholar 

  101. Lionta E, Spyrou G, Vassilatis DK et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Halperin I, Ma B, Wolfson H et al (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct Funct Bioinf 47:409–443

    Article  CAS  Google Scholar 

  103. Dias R, de Azevedo WF (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  PubMed  Google Scholar 

  104. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pierce BG, Wiehe K, Hwang H et al (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics (Oxford, England) 30:1771–1773

    Article  CAS  Google Scholar 

  107. Sauton N, Lagorce D, Villoutreix BO et al (2008) MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 9:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Liu M, Wang S (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13:435–451

    Article  CAS  PubMed  Google Scholar 

  109. Neves MAC, Totrov M, Abagyan R (2012) Docking and scoring with ICM: the benchmarking results and strategies for improvement. J Comput Aided Mol Des 26:675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hartshorn MJ, Verdonk ML, Chessari G et al (2007) Diverse, high-quality test set for the validation of protein−ligand docking performance. J Med Chem 50:726–741

    Article  CAS  PubMed  Google Scholar 

  111. Spitzer R, Jain AN (2012) Surflex-dock: docking benchmarks and real-world application. J Comput Aided Mol Des 26:687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hindle SA, Rarey M, Buning C et al (2002) Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des 16:129–149

    Article  CAS  PubMed  Google Scholar 

  113. Pang Y-P, Perola E, Xu K et al (2001) EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases. J Comput Chem 22:1750–1771

    Article  CAS  PubMed  Google Scholar 

  114. Miller MD, Kearsley SK, Underwood DJ et al (1994) FLOG: a system to select “quasi-flexible” ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8:153–174

    Article  CAS  PubMed  Google Scholar 

  115. Verdonk ML, Chessari G, Cole JC et al (2005) Modeling water molecules in protein−ligand docking using GOLD. J Med Chem 48:6504–6515

    Article  CAS  PubMed  Google Scholar 

  116. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  117. Schnecke V, Kuhn LA (2000) Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discovery Des 20:171–190

    Article  CAS  Google Scholar 

  118. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225

    Article  CAS  PubMed  Google Scholar 

  119. Langer T, Hoffman RD (2006). Pharmacophores and PharmacophoreSearches. Wiley-VCH: Weinheim

    Google Scholar 

  120. Wolber G, Seidel T, Bendix F et al (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23–29

    Article  CAS  PubMed  Google Scholar 

  121. Güner OF (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2:1321–1332

    Article  PubMed  Google Scholar 

  122. Khedkar SA, Malde AK, Coutinho EC et al (2007) Pharmacophore modeling in drug discovery and development: an overview. Med Chem (Shāriqah (United Arab Emirates)) 3:187–197

    Article  CAS  Google Scholar 

  123. Braga RC, Andrade CH (2013) Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Top Med Chem 13:1127–1138

    Article  CAS  PubMed  Google Scholar 

  124. Pirhadi S, Shiri F, Ghasemi JB (2013) Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 13:1036–1047

    Article  CAS  PubMed  Google Scholar 

  125. Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  PubMed  Google Scholar 

  126. Güner O, Clement O, Kurogi Y (2004) Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem 11:2991–3005

    Article  PubMed  Google Scholar 

  127. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  CAS  PubMed  Google Scholar 

  128. Martin YC, Bures MG, Danaher EA et al (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 7:83–102

    Article  CAS  PubMed  Google Scholar 

  129. Ambure P, Roy K (2014) Advances in quantitative structure-activity relationship models of anti-Alzheimer’s agents. Expert Opin Drug Discovery 9:697–723

    Article  CAS  Google Scholar 

  130. Ambure P, Roy K (2015) Exploring structural requirements of imaging agents against Aβ plaques in Alzheimer’s disease: a QSAR approach. Comb Chem High Throughput Screen 18:411–419

    Article  CAS  PubMed  Google Scholar 

  131. Brahmachari G, Choo C, Ambure P et al (2015) In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores. Bioorg Med Chem 23:4567–4575

    Article  CAS  PubMed  Google Scholar 

  132. Ambure P, Roy K (2017) CADD modeling of multi-target drugs against Alzheimer’s disease. Curr Drug Targets 18:522–533

    Article  CAS  PubMed  Google Scholar 

  133. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81:41–49

    Article  CAS  PubMed  Google Scholar 

  134. Tripathi S, Kumar A, Kahlon AK, et al (2016) Current trends in docking methodologies. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-0115-2.ch013. pp 320–338

  135. Doman TN, McGovern SL, Witherbee BJ et al (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45:2213–2221

    Article  CAS  PubMed  Google Scholar 

  136. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84

    Article  CAS  PubMed  Google Scholar 

  137. Osguthorpe DJ, Sherman W, Hagler AT (2012) Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J Phys Chem B 116:6952–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Osguthorpe DJ, Sherman W, Hagler AT (2012) Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80:182–193

    Article  CAS  PubMed  Google Scholar 

  139. Polgár T, Magyar C, Simon I et al (2007) Impact of ligand protonation on virtual screening against β-Secretase (BACE1). J Chem Inf Model 47:2366–2373

    Article  PubMed  CAS  Google Scholar 

  140. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  PubMed  CAS  Google Scholar 

  141. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11:580–594

    Article  CAS  PubMed  Google Scholar 

  142. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502

    Article  CAS  PubMed  Google Scholar 

  143. Polgár T, Keserü GM (2005) Virtual screening for β-Secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J Med Chem 48:3749–3755

    Article  PubMed  CAS  Google Scholar 

  144. Ngan CH, Bohnuud T, Mottarella SE et al (2012) FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res 40:W271–W275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schmidtke P, Bidon-Chanal A, Luque FJ et al (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics (Oxford, England) 27:3276–3285

    Article  CAS  Google Scholar 

  147. Grove LE, Hall DR, Beglov D et al (2013) FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics (Oxford, England) 29:1218–1219

    Article  CAS  Google Scholar 

  148. Athanasiadis E, Cournia Z, Spyrou G (2012) ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics (Oxford, England) 28:3002–3003

    Article  CAS  Google Scholar 

  149. Waszkowycz B (2008) Towards improving compound selection in structure-based virtual screening. Drug Discov Today 13:219–226

    Article  CAS  PubMed  Google Scholar 

  150. Malmstrom RD, Watowich SJ (2011) Using free energy of binding calculations to improve the accuracy of virtual screening predictions. J Chem Inf Model 51:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ding B, Wang J, Li N et al (2013) Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 53:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lemkul JA, Bevan DR (2010) Destabilizing Alzheimer’s Aβ42 Protofibrils with Morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49:3935–3946

    Article  CAS  PubMed  Google Scholar 

  153. Zhao J-H, Liu H-L, Elumalai P et al (2013) Molecular modeling to investigate the binding of Congo red toward GNNQQNY protofibril and in silico virtual screening for the identification of new aggregation inhibitors. J Mol Model 19:151–162

    Article  CAS  PubMed  Google Scholar 

  154. Jalkute CB, Barage SH, Dhanavade MJ et al (2013) Molecular dynamics simulation and molecular docking studies of angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta peptide. Protein J 32:356–364

    Article  CAS  PubMed  Google Scholar 

  155. Kocak A, Erol I, Yildiz M et al (2016) Computational insights into the protonation states of catalytic dyad in BACE1–acyl guanidine based inhibitor complex. J Mol Graph Model 70:226–235

    Article  CAS  PubMed  Google Scholar 

  156. Hernández-Rodríguez M, Correa-Basurto J, Gutiérrez A et al (2016) Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Eur J Med Chem 124:1142–1154

    Article  PubMed  CAS  Google Scholar 

  157. Eskici G, Gur M (2013) Computational Design of new Peptide Inhibitors for amyloid Beta (Aβ) aggregation in Alzheimer’s disease: application of a novel methodology. PLoS One 8:e66178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brenk R, Klebe G (2006) “Hot spot” analysis ofprotein-bindingsites as a prerequisite forstructure-basedvirtual screening and lead optimization. In: Langer T, Hoffmann RD (eds) Pharmacophores and Pharmacophore searches.Wiley-VCHVerlag GmbH & Co. KGaA, pp 171–192, Weinheim.

    Google Scholar 

  159. Wermuth CG (2006) Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD (eds) Pharmacophores and Pharmacophore searches.Wiley-VCHVerlag GmbH & Co. KGaA, pp 1–13,​Weinheim.

    Google Scholar 

  160. Poptodorov K, Luu T, Hoffmann RD (2006) Pharmacophore model generation software tools. In: Langer T, Hoffmann RD (eds) Pharmacophores and Pharmacophore searches.Wiley-VCHVerlag GmbH & Co. KGaA, pp 15–47,​Weinheim.

    Google Scholar 

  161. Langer T, Hoffmann RD (2006) Pharmacophores and Pharmacophore searches. John Wiley & Sons, Weinheim

    Book  Google Scholar 

  162. Triballeau N, BertrandH-O,Acher F (2006) Are you sure you have a good model? In: Langer T, Hoffmann RD (eds) Pharmacophores and Pharmacophore searches.Wiley-VCHVerlag GmbH & Co. KGaA, pp 325–364,​Weinheim.

    Google Scholar 

  163. Ju Y, Li Z, Deng Y et al (2016) Identification of novel BACE1 inhibitors by combination of Pharmacophore modeling, structure-based design and in vitro assay. Curr Comput Aided Drug Des 12:73–82

    Article  CAS  PubMed  Google Scholar 

  164. Kumar A, Roy S, Tripathi S et al (2016) Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J Biomol Struct Dyn 34:239–249

    Article  CAS  PubMed  Google Scholar 

  165. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  166. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9:646–652

    Article  CAS  Google Scholar 

  167. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

  168. Barman A, Schürer S, Prabhakar R (2011) Computational modeling of substrate specificity and catalysis of the β-Secretase (BACE1) enzyme. Biochemistry 50:4337–4349

    Article  CAS  PubMed  Google Scholar 

  169. Hornak V, Okur A, Rizzo RC et al (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci U S A 103:915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McGaughey GB, Colussi D, Graham SL et al (2007) Beta-secretase (BACE-1) inhibitors: accounting for 10s loop flexibility using rigid active sites. Bioorg Med Chem Lett 17:1117–1121

    Article  CAS  PubMed  Google Scholar 

  171. Kumalo HM, Bhakat S, Soliman ME (2016) Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J Biomol Struct Dyn 34:1008–1019

    Article  CAS  PubMed  Google Scholar 

  172. Berhanu WM, Masunov AE (2015) Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J Biomol Struct Dyn 33:1399–1411

    Article  CAS  PubMed  Google Scholar 

  173. Nguyen P, Derreumaux P (2014) Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Acc Chem Res 47:603–611

    Article  CAS  PubMed  Google Scholar 

  174. Okumura H, Itoh SG (2016) Structural and fluctuational difference between two ends of Aβ amyloid fibril: MD simulations predict only one end has open conformations. Sci Rep 6:38422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Melquiond A, Dong X, Mousseau N et al (2008) Role of the region 23-28 in Abeta fibril formation: insights from simulations of the monomers and dimers of Alzheimer’s peptides Abeta40 and Abeta42. Curr Alzheimer Res 5:244–250

    Article  CAS  PubMed  Google Scholar 

  176. Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114:1652–1660

    Article  CAS  PubMed  Google Scholar 

  177. Brown AM, Bevan DR (2016) Molecular dynamics simulations of amyloid β-peptide (1-42): tetramer formation and membrane interactions. Biophys J 111:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kitamura K, Tamura Y, Ueki T et al (2014) Binding free-energy calculation is a powerful tool for drug optimization: calculation and measurement of binding free energy for 7-Azaindole derivatives to glycogen synthase kinase-3β. J Chem Inf Model 54:1653–1660

    Article  CAS  PubMed  Google Scholar 

  179. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  CAS  PubMed  Google Scholar 

  180. Gapsys V, Michielssens S, Peters JH et al (2015) Calculation of binding free energies. Methods Mol Biol (Clifton, N.J) 1215:173–209

    Article  CAS  Google Scholar 

  181. Meirovitch H, Cheluvaraja S, White RP (2009) Methods for calculating the entropy and free energy and their application to problems involving protein flexibility and ligand binding. Curr Protein Pept Sci 10:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Roy S, Kumar A, Baig MH et al (2015) Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods (San Diego, Calif) 83:105–110

    Article  CAS  Google Scholar 

  183. Smalley KSM, Haass NK, Brafford PA et al (2006) Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 5:1136–1144

    Article  CAS  PubMed  Google Scholar 

  184. Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29:153–159

    Article  CAS  PubMed  Google Scholar 

  185. Müller R (2004) Crosstalk of oncogenic and prostanoid signaling pathways. J Cancer Res Clin Oncol 130:429–444

    Article  PubMed  Google Scholar 

  186. Sergina NV, Rausch M, Wang D et al (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Overall CM, Kleifeld O (2006) Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  CAS  PubMed  Google Scholar 

  188. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    Article  CAS  PubMed  Google Scholar 

  189. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  CAS  PubMed  Google Scholar 

  190. Iqbal K, Grundke-Iqbal I (2010) Alzheimer disease, a multifactorial disorder seeking multi-therapies. Alzheimers Dement J Alzheimers Assoc 6:420–424

    Article  CAS  Google Scholar 

  191. Bolognesi ML, Rosini M, Andrisano V et al (2009) MTDL design strategy in the context of Alzheimer’s disease: from lipocrine to memoquin and beyond. Curr Pharm Des 15:601–613

    Article  CAS  PubMed  Google Scholar 

  192. León R, Garcia AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33:139–189

    Article  PubMed  CAS  Google Scholar 

  193. Ma XH, Wang R, Yang SY et al (2008) Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. J Chem Inf Model 48:1227–1237

    Article  CAS  PubMed  Google Scholar 

  194. Arooj M, Sakkiah S, Cao G et al (2013) An innovative strategy for dual inhibitor design and its application in dual inhibition of human Thymidylate synthase and Dihydrofolate reductase enzymes. PLoS One 8:e60470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chang S-S, Huang H-J, Chen CY-C (2011) Two birds with one stone? Possible dual-targeting H1N1 inhibitors from traditional Chinese medicine. PLoS Comput Biol 7:e1002315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ma XH, Shi Z, Tan C et al (2010) In-Silico approaches to multi-target drug discovery. Pharm Res 27:739–749

    Article  CAS  PubMed  Google Scholar 

  197. Cosconati S, Forli S, Perryman AL et al (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery 5:597–607

    Article  CAS  Google Scholar 

  198. Huey R, Morris GM, Olson AJ et al (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  199. Xie H, Wen H, Zhang D et al (2017) Designing of dual inhibitors for GSK-3β and CDK5: virtual screening and in vitro biological activities study. Oncotarget 8:18118

    PubMed  PubMed Central  Google Scholar 

  200. Ma X, Chen Y (2012) Chapter 9: In Silico Lead Generation Approaches in Multi-Target Drug Discovery, Presented at the March 28

    Google Scholar 

  201. Huang W, Tang L, Shi Y et al (2011) Searching for the multi-target-directed ligands against Alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorg Med Chem 19:7158–7167

    Article  CAS  PubMed  Google Scholar 

  202. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  PubMed  Google Scholar 

  203. Sliwoski G, Kothiwale S, Meiler J et al (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553

    Article  CAS  PubMed  Google Scholar 

  205. Huang W, Lv D, Yu H et al (2010) Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer’s disease. Bioorg Med Chem 18:5610–5615

    Article  CAS  PubMed  Google Scholar 

  206. Goyal M, Dhanjal JK, Goyal S et al (2014) Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. Biomed Res Int 2014:e979606

    Article  CAS  Google Scholar 

  207. Duan S, Guan X, Lin R et al (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging 36:1792–1807

    Article  CAS  PubMed  Google Scholar 

  208. Nikolic K, Mavridis L, Bautista-Aguilera OM et al (2014) Predicting targets of compounds against neurological diseases using cheminformatic methodology. J Comput Aided Mol Des 29:183–198

    Article  PubMed  CAS  Google Scholar 

  209. Fang L, Kraus B, Lehmann J et al (2008) Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg Med Chem Lett 18:2905–2909

    Article  CAS  PubMed  Google Scholar 

  210. Bautista-Aguilera OM, Esteban G, Chioua M et al (2014) Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids. Drug Des Devel Ther 8:1893–1910

    PubMed  PubMed Central  Google Scholar 

  211. González-Díaz H, Prado-Prado FJ, Santana L et al (2006) Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorg Med Chem 14:5973–5980

    Article  PubMed  CAS  Google Scholar 

  212. Youdim MBH (2010) Why do we need multifunctional Neuroprotective and Neurorestorative drugs for Parkinson’s and Alzheimer’s diseases as disease modifying agents. Exp Neurobiol 19:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  213. Youdim MBH (2013) Multi target Neuroprotective and Neurorestorative anti-Parkinson and anti-Alzheimer drugs Ladostigil and M30 derived from Rasagiline. Exp Neurobiol 22:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sagi Y, Driguès N, Youdim MBH (2005) The neurochemical and behavioral effects of the novel cholinesterase–monoamine oxidase inhibitor, ladostigil, in response to L-dopa and L-tryptophan, in rats. Br J Pharmacol 146:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Weinreb O, Mandel S, Bar-Am O et al (2009) Multifunctional neuroprotective derivatives of rasagiline as anti-alzheimer’s disease drugs. Neurotherapeutics 6:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Luo W, Li Y-P, He Y et al (2011) Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg Med Chem 19:763–770

    Article  CAS  PubMed  Google Scholar 

  217. Zhang C, Du Q-Y, Chen L-D et al (2016) Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer’s disease. Eur J Med Chem 116:200–209

    Article  CAS  PubMed  Google Scholar 

  218. Viayna E, Gómez T, Galdeano C et al (2010) Novel huprine derivatives with inhibitory activity toward β-amyloid aggregation and formation as disease-modifying anti-Alzheimer drug candidates. ChemMedChem 5:1855–1870

    Article  CAS  PubMed  Google Scholar 

  219. Piazzi L, Rampa A, Bisi A et al (2003) 3-(4-[[benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J Med Chem 46:2279–2282

    Article  CAS  PubMed  Google Scholar 

  220. Rampa A, Bisi A, Valenti P et al (1998) Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl derivatives. J Med Chem 41:3976–3986

    Article  CAS  PubMed  Google Scholar 

  221. Bajda M, Guzior N, Ignasik M et al (2011) Multi-target-directed ligands in Alzheimer’s disease treatment. Curr Med Chem 18:4949–4975

    Article  CAS  PubMed  Google Scholar 

  222. Rampa A, Tarozzi A, Mancini F et al (2016) Naturally inspired molecules as multifunctional agents for Alzheimer’s disease treatment. Molecules 21:643

    Article  CAS  Google Scholar 

  223. Costantino L, Barlocco D (2012) Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry? Future Med Chem 5:5–7

    Article  CAS  Google Scholar 

  224. Swarbrick ME (2011)Chapter 3: the learning and evolution of medicinal chemistry against kinase targets. In:Chapter 3:the learning and evolution of medicinal chemistry against kinase targets, pp 79–95, Cambridge, UK.

    Google Scholar 

  225. Sun CL, Christensen JG, McMahon G (2009) Discovery and development of Sunitinib (SU11248): a multitarget tyrosine kinase inhibitor of tumor growth, survival, and angiogenesis. In: Li R, Stafford JA (eds) Kinase inhibitor drugs. John Wiley & Sons, Inc, pp 1–39,​Cambridge, UK.

    Google Scholar 

  226. Lin X, Huang X-P, Chen G et al (2012) Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors. J Med Chem 55:5749–5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182

    Article  CAS  PubMed  Google Scholar 

  228. Hurko O, Ryan JL (2005) Translational research in central nervous system drug discovery. NeuroRx 2:671–682

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kumar, A., Sharma, A. (2018). Computational Modeling of Multi-target-Directed Inhibitors Against Alzheimer’s Disease. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics