Computational Modeling of Drugs for Alzheimer’s Disease: Design of Serotonin 5-HT6 Antagonists

  • Ádám A. Kelemen
  • Stefan Mordalski
  • Andrzej J. Bojarski
  • György M. Keserű
Protocol
Part of the Neuromethods book series (NM, volume 132)

Abstract

The 5-hydroxytryptamine receptor 6 (5-HT6R) represents one of the most avowed targets for alleviating cognitive, learning, and memory deficits related to Alzheimer’s disease (AD). Ligand- and structure-based computational modeling methods serve as main tools at the initial stages of drug discovery projects to underlie and to understand small molecule targeting of the receptor. Here, we describe the currently known 5-HT6R antagonists in clinical trials and at discovery stages. We analyze existing ligand-based information and disposable pharmacophore models, quantitative structure-activity relationship methods, usable crystal structure templates, homology models, and molecular docking approaches. Our goal is to provide the reader with guidelines on how to utilize the existing knowledge and ligand- and structure-based methods for the design of new 5-HT6R antagonists and to highlight advantages and limitations of corresponding approaches and computational modeling tools in the field of 5-HT6R drug design.

Key words

5-Hydroxytryptamine receptor 6 Alzheimer’s disease Pharmacophore modeling Quantitative structure-activity relationship Bioisosteres Homology modeling Molecular dynamics Site-directed mutagenesis Molecular docking 

Notes

Acknowledgments

The authors participate in the European Cooperation in Science and Technology (COST) Action CM1207 – GPCR-Ligand Interactions, Structures, and Transmembrane Signalling: a European Research Network (GLISTEN). This work was supported by the National Brain Research Program KTIA-NAP-13-1-2013-0001. The study was partially supported by the grant OPUS 2014/13/B/NZ7/02210 from the Polish National Science Centre.

References

  1. 1.
    Southan C et al (2016) The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44:D1054–D1068PubMedCrossRefGoogle Scholar
  2. 2.
    Dubertret C, Hanoun N, Adès J, Hamon M, Gorwood P (2004) Family-based association study of the serotonin-6 receptor gene (C267T polymorphism) in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 126B:10–15PubMedCrossRefGoogle Scholar
  3. 3.
    Sleight AJ, Boess FG, Bös M, Bourson A (1998) The putative 5-HT6 receptor: localization and function. Ann N Y Acad Sci 861:91–96Google Scholar
  4. 4.
    Marazziti D et al (2013) Serotonin receptors of type 6 (5-HT6): from neuroscience to clinical pharmacology. Curr Med Chem 20:371–377PubMedGoogle Scholar
  5. 5.
    Upton N, Chuang TT, Hunter AJ, Virley DJ (2008) 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5:458–469PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Messina D et al (2002) Association of the 5-HT6 receptor gene polymorphism C267T with Parkinson’s disease. Neurology 58:828–829PubMedCrossRefGoogle Scholar
  7. 7.
    Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors : their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1159–1172CrossRefGoogle Scholar
  8. 8.
    Kendall I et al (2011) E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology 213:413–430PubMedCrossRefGoogle Scholar
  9. 9.
    Dudek M, Marcinkowska M, Bucki A, Olczyk A, Kołaczkowski M (2015) Idalopirdine – a small molecule antagonist of 5-HT6 with therapeutic potential against obesity. Metab Brain Dis 30:1487–1494PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Frantz K, Hansson K, Stouffer D, Parsons L (2002) 5-HT6 receptor antagonism potentiates the behavioral and neurochemical effects of amphetamine but not cocaine. Neuropharmacology 42:170–180PubMedCrossRefGoogle Scholar
  11. 11.
    Morairty SR, Hedley L, Flores J, Martin R, Kilduff TS (2008) Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep 31:34–44PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ham B-J et al (2004) Serotonergic genes and personality traits in the Korean population. Neurosci Lett 354:2–5PubMedCrossRefGoogle Scholar
  13. 13.
    Lane H-Y et al (2008) Prefrontal executive function and D1, D3, 5-HT2A and 5-HT6 receptor gene variations in healthy adults. J Psychiatry Neurosci 33:47–53PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee S-H et al (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59:140–145PubMedCrossRefGoogle Scholar
  15. 15.
    Frederick JA, Meador-Woodruff JH (1999) Effects of clozapine and haloperidol on 5-HT6 receptor mRNA levels in rat brain. Schizophr Res 38:7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Yun H-M, Rhim H (2011) The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol 20:159–168PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mitchell ES, Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108:320–333PubMedCrossRefGoogle Scholar
  18. 18.
    Hirst WD et al (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64:1295–1308PubMedCrossRefGoogle Scholar
  19. 19.
    Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    U.S. National Library of Medicine. Home – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/. Accessed 19 Dec 2016
  21. 21.
    Nirogi R et al (2011) SUVN-502: a potent and selective 5-HT6 antagonist, potential drug for the treatment of Alzheimer’s disease. Alzheimers Dement 7:S659CrossRefGoogle Scholar
  22. 22.
    Suven Life Sciences Limited. SUVN-502 with donepezil and memantine for the treatment of moderate Alzheimer’s disease- phase 2a Study – full text view – ClinicalTrials.gov. NCT02580305 Available at: https://clinicaltrials.gov/ct2/show/NCT02580305. Accessed 19 Dec 2016
  23. 23.
    Codony X, Vela JM, Ramírez MJ (2011) 5-HT6 receptor and cognition. Curr Opin Pharmacol 11:94–100PubMedCrossRefGoogle Scholar
  24. 24.
    Jake King. Pfizer Halts drug trial, investors flee axovant. Available at: http://www.forbes.com/sites/jakeking/2016/02/02/pfizer-halts-drug-trial-investors-flee-axovant/`1546ae6f71f9. Accessed 19 Dec 2016
  25. 25.
    Arnt J et al (2010) Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int J Neuropsychopharmacol 13:1021–1033PubMedCrossRefGoogle Scholar
  26. 26.
    Maher-Edwards G et al (2015) Two randomized controlled trials of SB742457 in mild-to-moderate Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv 1:23–36CrossRefGoogle Scholar
  27. 27.
    de Bruin NM et al (2013) A novel highly selective 5-HT6 receptor antagonist attenuates ethanol and nicotine seeking but does not affect inhibitory response control in Wistar rats. Behav Brain Res 236:157–165Google Scholar
  28. 28.
    Maher-Edwards G et al (2011) SB-742457 and donepezil in Alzheimer disease: a randomized, placebo-controlled study. Int J Geriatr Psychiatry 26:536–544PubMedCrossRefGoogle Scholar
  29. 29.
    ABOUT INTEPIRDINE(RVT-101) – Axovant sciences – A Dementia Solutions Company. Available at: http://axovant.com/pipeline/intepirdine-rvt-101/. Accessed 5 Jan 2017
  30. 30.
    Kim H-J et al (2008) New serotonin 5-HT(6) ligands from common feature pharmacophore hypotheses. J Chem Inf Model 48:197–206PubMedCrossRefGoogle Scholar
  31. 31.
    Ivachtchenko AV, Lavrovsky Y, Ivanenkov YA (2016) AVN-211, novel and highly selective 5-HT 6 receptor small molecule antagonist, for the treatment of Alzheimer’s disease. Mol Pharm 13:945–963PubMedCrossRefGoogle Scholar
  32. 32.
    Ivachtchenko AV, Lavrovsky Y, Okun I (2016) AVN-101: a multi-target drug candidate for the treatment of CNS disorders. J Alzheimers Dis 53:583–620PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    SYN120 a Dual 5-HT6/5-HT2A antagonist proof of concept study to evaluate its safety, tolerability and efficacy in Parkinson’s disease dementia (SYNAPSE) – full text view – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02258152. Accessed 5 Jan 2017
  34. 34.
    The Pfizer SAM-760 study | Join dementia research news. Available at: http://news.joindementiaresearch.nihr.ac.uk/sam-760-study/. Accessed 5 Jan 2017
  35. 35.
    Safety, tolerability, and pharmacokinetics of ABT-354 in subjects with mild-to-moderate Alzheimer’s disease on stable doses of acetylcholinesterase inhibitors – full text view – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01908010. Accessed 5 Jan 2017
  36. 36.
    Schaffhauser H et al (2009) Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol 78:1035–1042PubMedCrossRefGoogle Scholar
  37. 37.
    Herrik KF et al (2016) The 5-HT6 receptor antagonist idalopirdine potentiates the effects of acetylcholinesterase inhibition on neuronal network oscillations and extracellular acetylcholine levels in the rat dorsal hippocampus. Neuropharmacology 107:351–363PubMedCrossRefGoogle Scholar
  38. 38.
    Ivachtchenko AV, Ivanenkov YA, Veselov MS (2016) Preclinical evaluation of AVN-322, novel and highly selective 5-HT6 receptor antagonist, for the treatment of Alzheimer’s disease. Curr Alzheimer Res 14:268–294Google Scholar
  39. 39.
    Mohler EG et al (2012) The effects of PRX-07034, a novel 5-HT6 antagonist, on cognitive flexibility and working memory in rats. Psychopharmacology 220:687–696PubMedCrossRefGoogle Scholar
  40. 40.
    SYN120 – Biotie therapies. Available at: http://www.biotie.com/product-portfolio/syn120.aspx?sc_lang=en. Accessed 5 Jan 2017
  41. 41.
    Seong CM, Park WK, Park CM, Kong JY, Park NS (2008) Discovery of 3-aryl-3-methyl-1H-quinoline-2,4-diones as a new class of selective 5-HT6 receptor antagonists. Bioorg Med Chem Lett 18:738–743PubMedCrossRefGoogle Scholar
  42. 42.
    Routledge C et al (2000) Characterization of SB-271046: a potent, selective and orally active 5-HT 6 receptor antagonist. Br J Pharmacol 130:1606–1612PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bromidge SM et al (1999) 5-Chloro-N-(4-methoxy-3-piperazin-1-yl- phenyl)-3-methyl-2-benzothiophenesulfon- amide(SB-271046): a potent, selective, and orally bioavailable 5-HT6 receptor antagonist. J Med Chem 42:202–205Google Scholar
  44. 44.
    Zhao S-H et al (2007) 3,4-Dihydro-2H-benzo[1,4]oxazine derivatives as 5-HT6 receptor antagonists. Bioorg Med Chem Lett 17:3504–3507PubMedCrossRefGoogle Scholar
  45. 45.
    Holenz J et al (2004) Medicinal chemistry driven approaches toward novel and selective serotonin 5-HT6 receptor ligands. J Med Chem 48:1781–1795CrossRefGoogle Scholar
  46. 46.
    Ivachtchenko AV et al (2014) Sulfonyl-containing modulators of serotonin 5-HT6receptors and their pharmacophore models. Russ Chem Rev 83:439–473Google Scholar
  47. 47.
    Caldirola P et al (2006) Benzofuranyl derivatives as 5-HT6-receptor inhibitors. WO2006134150 A1Google Scholar
  48. 48.
    Haupt A et al (2010) N-phenyl-(piperazinyl or homopiperazinyl)-benzenesulfonamide or benzenesulfonyl-phenyl-(piperazine or homopiperazine) compounds suitable for treating disorders that respond to modulation of the serotonin 5-ht6 receptor. WO2010125134 A1Google Scholar
  49. 49.
    Parker CA et al (2012) Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med 53:295–303PubMedCrossRefGoogle Scholar
  50. 50.
    Kołaczkowski M, Mierzejewski P, Bieńkowski P, Wesołowska A, Newman-TancrediA (2014) ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility. Br J Pharmacol 171:973–984Google Scholar
  51. 51.
    Gravius A et al (2011) Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behav Pharmacol 22:122–135PubMedCrossRefGoogle Scholar
  52. 52.
    Monti JM, Jantos H (2011) Effects of the 5-HT6 receptor antagonists SB-399885 and RO-4368554 and of the 5-HT2A receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light–dark cycle. Behav Brain Res 216:381–388PubMedCrossRefGoogle Scholar
  53. 53.
    Stean TO et al (2002) Pharmacological profile of SB-357134: a potent, selective, brain penetrant, and orally active 5-HT6 receptor antagonist. Pharmacol Biochem Behav 71:645–654PubMedCrossRefGoogle Scholar
  54. 54.
    Hirst WD et al (2006) SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 553:109–119PubMedCrossRefGoogle Scholar
  55. 55.
    Ahmed M et al (2005) Bicyclic heteroarylpiperazines as selective brain penetrant 5-HT6 receptor antagonists. Bioorg Med Chem Lett 15:4867–4871PubMedCrossRefGoogle Scholar
  56. 56.
    Sleight AJ et al (1998) Characterization of Ro 04-6790 and Ro 63-0563: potent and selective antagonists at human and rat 5-HT6 receptors. Br J Pharmacol 124:556–562Google Scholar
  57. 57.
    Tsai Y et al (2000) N1-(Benzenesulfonyl)tryptamines as novel 5-HT6 antagonists. Bioorg MedChem Lett 10:2295–2299CrossRefGoogle Scholar
  58. 58.
    Glennon RA et al (2000)2-substitutedtryptamines: agents with selectivity for 5-HT6 serotonin receptors. J Med Chem 43:1011–1018Google Scholar
  59. 59.
    Riemer C et al (2003) Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-Bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 46:1273–1276PubMedCrossRefGoogle Scholar
  60. 60.
    de Bruin et al (2011) Two novel 5-HT6receptor antagonists ameliorate scopolamine-induced memory deficits in the object recognition and object location tasks in Wistar rats. Neurobiol Learn Mem 96:392–402Google Scholar
  61. 61.
    Slassi A et al (1999) 3-(2-pyrrolidinylmethyl)-indole compounds having 5-HT6 affinity. WO1999047516A1Google Scholar
  62. 62.
    Fludzinski P et al (1987) Indazoles as indole bioisosteres: synthesis and evaluation of the tropanyl ester and amide of indazole-3-carboxylate as antagonists at the serotonin 5HT3 receptor. J Med Chem 30:1535–1537PubMedCrossRefGoogle Scholar
  63. 63.
    Bento AP et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090PubMedCrossRefGoogle Scholar
  64. 64.
    Leśniak D, Jastrzębski S, Podlewska S, Czarnecki WM, Bojarski AJ (2017) Quo vadis G protein-coupled receptor ligands? A tool for analysis of the emergence of new groups of compounds over time. Bioorg Med Chem Lett 27:626–631PubMedCrossRefGoogle Scholar
  65. 65.
    RDKit: Open-source cheminformatics. http:\crwww.rdkit.org
  66. 66.
    Isberg V et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44:D356–D364PubMedCrossRefGoogle Scholar
  67. 67.
    Wacker D et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168:377–389.e12PubMedCrossRefGoogle Scholar
  68. 68.
    Miller-Gallacher JL et al (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 9:e92727PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wang C et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Thorsen TS, Matt R, Weis WI, Kobilka BK (2014) Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 22:1657–1664Google Scholar
  71. 71.
    Michino M et al (2014) What can crystal structures of Aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 67:198–213CrossRefGoogle Scholar
  72. 72.
    Kołaczkowski M et al (2014) Novel arylsulfonamide derivatives with 5-HT6/5-HT7 receptor antagonism targeting behavioral and psychological symptoms of dementia. J Med Chem 57:4543–4557PubMedCrossRefGoogle Scholar
  73. 73.
    Vass M et al (2015) Dynamics and structural determinants of ligand recognition of the 5-HT6 receptor. J Comput Aided Mol Des 29:1137–1149PubMedCrossRefGoogle Scholar
  74. 74.
    Benhamú B, Martín-Fontecha M, Vázquez-Villa H, Pardo L, López-Rodríguez ML (2014) Serotonin 5-HT receptor antagonists for the treatment of cognitive deficiency in Alzheimer’s disease. J Med Chem 57:7160–7181Google Scholar
  75. 75.
    López-Rodríguez ML et al (2005) A three-dimensional pharmacophore model for 5-hydroxytryptamine6 (5-HT6) receptor antagonists. J Med Chem 48:4216–4219PubMedCrossRefGoogle Scholar
  76. 76.
    Tasler (2007) Discovery of 5-HT6 receptor ligands based on virtual HTS. Bioorg Med Chem Lett 17:6224–6229PubMedCrossRefGoogle Scholar
  77. 77.
    Liu KG et al (2009) 1-Sulfonylindazoles as potent and selective 5-HT6 ligands. Bioorg Med Chem Lett 19:2413–2415PubMedCrossRefGoogle Scholar
  78. 78.
    de la Fuente T et al (2010) Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. J Med Chem 53:1357–1369PubMedCrossRefGoogle Scholar
  79. 79.
    Devegowda VN et al (2013) Synthesis and the 5-HT6 receptor antagonistic effect of 3-arylsulfonylamino-5,6-dihydro-6-substituted pyrazolo[3,4]pyridinones for neuropathic pain treatment. Bioorg Med Chem Lett 23:4696–4700PubMedCrossRefGoogle Scholar
  80. 80.
    Hayat F et al (2013) Design and synthesis of novel series of 5-HT6 receptor ligands having indole, a central aromatic core and 1-amino-4 methyl piperazine as a positive ionizable group. Bioorg Med Chem 21:5573–5582PubMedCrossRefGoogle Scholar
  81. 81.
    Dobi K et al (2015) Combination of pharmacophore matching, 2D similarity search, and in vitro biological assays in the selection of potential 5-HT antagonists from large commercial repositories. Chem Biol Drug Des 86:864–880Google Scholar
  82. 82.
    Rusinko AI et al (1999) Analysis of a large structure/biological activity data set using recursive Partitioning. J Med Chem 39:1017–1026Google Scholar
  83. 83.
    Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372Google Scholar
  84. 84.
    Ivachtchenko A et al (2013) Synthesis of substituted diphenyl sulfones and their structure–activity relationship with the antagonism of 5-НТ6 receptors. Bioorg Med Chem 21:4614–4627PubMedCrossRefGoogle Scholar
  85. 85.
    Ivachtchenko AV et al (2012) Antagonists of 5-HT6 receptors. Substituted 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines—synthesis and ‘structure–activity’ relationship. Bioorg Med Chem Lett 22:4273–4280PubMedCrossRefGoogle Scholar
  86. 86.
    Ivachtchenko AV et al (2010) Synthesis of cycloalkane-annelated 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines and their evaluation as 5-HT6 receptor antagonists. Bioorg Med Chem Lett 20:2133–2136PubMedCrossRefGoogle Scholar
  87. 87.
    Ivachtchenko AV et al (2013) 5-HT6 receptor antagonists. V. Structure – activity relationship of (4-phenylsulfonyloxazol-5-yl) amines. Pharm Chem J 46:639–646Google Scholar
  88. 88.
    Doddareddy MR et al (2004) Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorg Med Chem 12:3815–3824PubMedCrossRefGoogle Scholar
  89. 89.
    Hao M, Li Y, Li H, Zhang S (2011) Investigation of the structure requirement for 5-HT6 binding affinity of arylsulfonyl derivatives: a computational study. Int J Mol Sci 12:5011–5030PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Doddareddy MR, Cho YS, Koh HY, Pae AN (2004) CoMFA and CoMSIA 3D QSAR analysis on N1-arylsulfonylindole compounds as 5-HT6 antagonists. Bioorg Med Chem 12:3977–3985PubMedCrossRefGoogle Scholar
  91. 91.
    Sharma BK, Singh P, Sarbhai K, Prabhakar YS (2010) A quantitative structure-activity relationship study on serotonin 5-HT6 receptor ligands: indolyl and piperidinyl sulphonamides. SAR QSAR Environ Res 21:369–388PubMedCrossRefGoogle Scholar
  92. 92.
    Choudhary M, Sharma BK (2014) QSAR rationales for the 5-HT6 antagonistic activity of Epiminocyclohepta [b] indoles. Der Pharma Chem 6:321–330Google Scholar
  93. 93.
    Choudhary M, Deshpande S, Sharma BK (2015) CP-MLR directed QSAR rationales for the 1-aryl Sulfonyl Tryptamines as 5-HT 6 receptor ligands. Br J Pharm Res 8:1–17CrossRefGoogle Scholar
  94. 94.
    Goodarzi M, Freitas MP, Ghasemi N (2010) QSAR studies of bioactivities of 1-(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines as 5-HT6 receptor ligands using physicochemical descriptors and MLR and ANN-modeling. Eur J Med Chem 45:3911–3915PubMedCrossRefGoogle Scholar
  95. 95.
    Velingkar V et al (2016)3D-QSAR,Synthesis and evaluation of novel piperidinylaminomethyl aryl sulfonamides with memory enhancing activity. JSM Chem 4:1–11Google Scholar
  96. 96.
    Todeschini R, Consonni V, Wiley InterScience (Online service) (2008) Handbook of molecular descriptors. Methods and Principles in Medicinal Chemistry Wiley-VCH, New YorkGoogle Scholar
  97. 97.
    Warszycki D, Mordalski S, Staroń J, Bojarski AJ (2015) Bioisosteric matrices for ligands of serotonin receptors. ChemMedChem 10:601–605PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Staroń J et al (2015) Rational design of 5-HT 6R ligands using a bioisosteric strategy: synthesis, biological evaluation and molecular modelling. RSC Adv 5:25806–25815Google Scholar
  99. 99.
    Staroń J et al (2016) Halogen bonding enhances activity in a series of dual 5-HT 6/D2 ligands designed in a hybrid bioisostere generation/virtual screening protocol. RSC Adv 6:54918–54925Google Scholar
  100. 100.
    Liu T, Tang GW, Capriotti E (2011) Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 14:532–547PubMedCrossRefGoogle Scholar
  101. 101.
    Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826PubMedPubMedCentralGoogle Scholar
  102. 102.
    Tang H, Wang XS, Hsieh J-H, Tropsha A (2012) Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening? Proteins 80:1503–1521PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rataj K, Witek J, Mordalski S, Kosciolek T, Bojarski AJ (2014) Impact of template choice on homology model efficiency in virtual screening. J Chem Inf Model 54:1661–1668PubMedCrossRefGoogle Scholar
  104. 104.
    Kufareva I et al (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure (London) 19:1108–1126CrossRefGoogle Scholar
  105. 105.
    Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491PubMedCrossRefGoogle Scholar
  106. 106.
    Kufareva I, Katritch V, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR dock 2013 assessment: meeting new challenges. Structure (London) 22:1120–1139Google Scholar
  107. 107.
    Worth CL, Kreuchwig A, Kleinau G, Krause G (2011) GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinformatics 12:185PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Latek D, Pasznik P, Carlomagno T, Filipek S (2013) Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS One 8:e56742PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dror RO et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108:13118–13123Google Scholar
  110. 110.
    Trzaskowski B et al (2012) Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 19:1090–1109PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84PubMedCrossRefGoogle Scholar
  112. 112.
    Schrödinger Release 2016–4: MacroModel, Schrödinger, LLC, New York (2016)Google Scholar
  113. 113.
    Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  114. 114.
    Zhang J et al (2006) Effects of mutations at conserved TM II residues on ligand binding and activation of mouse 5-HT6 receptor. Eur J Pharmacol 534:77–82PubMedCrossRefGoogle Scholar
  115. 115.
    Harris RN et al (2010) Highly potent, non-basic 5-HT6 ligands. Site mutagenesis evidence for a second binding mode at 5-HT6 for antagonism. Bioorg Med Chem Lett 20:3436–3440PubMedCrossRefGoogle Scholar
  116. 116.
    Halgren TA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759PubMedCrossRefGoogle Scholar
  117. 117.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMedCrossRefGoogle Scholar
  118. 118.
    Allen WJ et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755PubMedCrossRefGoogle Scholar
  120. 120.
    Lagarde N et al (2015) Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives. J Chem Inf Model 55:1297–1397Google Scholar
  121. 121.
    Chaput L,Martinez-Sanz J, Saettel N, Mouawad L (2016) Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. J Cheminform 8:56Google Scholar
  122. 122.
    Gaulton A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107PubMedCrossRefGoogle Scholar
  123. 123.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47:337–344PubMedCrossRefGoogle Scholar
  126. 126.
    Vass M et al (2016) Molecular interaction fingerprint approaches for GPCR drug discovery. Curr Opin Pharmacol 30:59–68PubMedCrossRefGoogle Scholar
  127. 127.
    Da C, Kireev D (2014) Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model 54:2555–2561PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Clark AM, Labute P (2007) 2D depiction of protein-ligand complexes. J Chem Inf Model 47:1933–1944PubMedCrossRefGoogle Scholar
  129. 129.
    Desaphy J, Raimbaud E, Ducrot P, Rognan D (2013) Encoding protein-ligand interaction patterns in fingerprints and graphs. J Chem Inf Model 53:623–637PubMedCrossRefGoogle Scholar
  130. 130.
    Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207PubMedCrossRefGoogle Scholar
  131. 131.
    Smusz S et al (2015) Multi-step protocol for automatic evaluation of docking results based on machine learning methods – a case study of serotonin receptors 5-HT6 and 5 HT7. J Chem Inf Model 55:823–832PubMedCrossRefGoogle Scholar
  132. 132.
    Venkatakrishnan AJ et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194PubMedCrossRefGoogle Scholar
  133. 133.
    Dror RO et al (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci U S A 108:18684–18689PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kołaczkowski M et al (2015) Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia. Eur J Med Chem 92:221–235PubMedCrossRefGoogle Scholar
  135. 135.
    Więckowska A et al (2016) Novel multi-target-directed ligands for Alzheimer’s disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur J Med Chem 124:63–81PubMedCrossRefGoogle Scholar
  136. 136.
    Rodríguez D, Brea J, Loza MI, Carlsson J (2014) Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure 22:1140–1151PubMedCrossRefGoogle Scholar
  137. 137.
    Fan H et al (2011) Statistical potential for modeling and ranking of protein-ligand interactions. J Chem Inf Model 51:3078–3092PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Nygaard R et al (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mordalski S, Witek J, Smusz S, Rataj K, Bojarski AJ (2015) Multiple conformational states in retrospective virtual screening – homology models vs. crystal structures: beta-2 adrenergic receptor case study. J Cheminform 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rueda M, Totrov M, Abagyan R (2012) ALiBERO: evolving a team of complementary pocket conformations rather than a single leader. J Chem Inf Model 52:2705–2714PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kooistra AJ et al (2016) Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 6:28288PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gloriam DE, Foord SM, Blaney FE, Garland SL (2009) Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design. J Med Chem 52:4429–4442PubMedCrossRefGoogle Scholar
  143. 143.
    Wacker D et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Ádám A. Kelemen
    • 1
  • Stefan Mordalski
    • 2
  • Andrzej J. Bojarski
    • 2
  • György M. Keserű
    • 1
  1. 1.Medicinal Chemistry Research Group, Research Center for Natural Sciences, Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of SciencesKrakowPoland

Personalised recommendations