Skip to main content

Introduction to Cancer Stem Cells: Past, Present, and Future

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1692))

Abstract

The Cancer Stem Cell (CSC) hypothesis postulates the existence of a small population of cancer cells with intrinsic properties allowing for resistance to conventional radiochemotherapy regiments and increased metastatic potential. Clinically, the aggressive nature of CSCs has been shown to correlate with increased tumor recurrence, metastatic spread, and overall poor patient outcome across multiple cancer subtypes. Traditionally, isolation of CSCs has been achieved through utilization of cell surface markers, while the functional differences between CSCs and remaining tumor cells have been described through proliferation, differentiation, and limiting dilution assays. The generated insights into CSC biology have further highlighted the importance of studying intratumoral heterogeneity through advanced functional assays, including CRISPR-Cas9 screens in the search of novel targeted therapies. In this chapter, we review the discovery and characterization of cancer stem cells populations within several major cancer subtypes, recent developments of novel assays used in studying therapy resistant tumor cells, as well as recent developments in therapies targeted at cancer stem cells.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-1-4939-7401-6_19

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ramalho-Santos M, Willenbring H (2007) On the origin of the term “stem cell”. Cell Stem Cell 1(1):35–38

    Article  CAS  PubMed  Google Scholar 

  2. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  3. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336

    Article  CAS  Google Scholar 

  4. McCulloch EA, Till JE, Siminovitch L (1965) The role of independent and dependent stem cells in the control of hemopoietic and immunologic responses. Wistar Inst Symp Monogr 4:61–68

    CAS  PubMed  Google Scholar 

  5. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    CAS  PubMed  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  8. Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F et al (2011) Evidence for human lung stem cells. N Engl J Med 364(19):1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohnheim J (1875) Congenitales, quergestreiftes muskelsarkon der nireren. Virchows Arch:65–64

    Google Scholar 

  10. Rippert H. Geschwulstelehre fur Aerzte und Studierende. 1904

    Google Scholar 

  11. Virchow R. 1863. Dir Krankhoften Geschwulste. Vol II. Onkologie, Pt 1

    Google Scholar 

  12. Paget J (1853) Lectures on surgical pathology. Lindsay & Blakiston, Philadelphia

    Google Scholar 

  13. Pierce GB, Dixon FJ Jr (1959) Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12(3):573–583

    Article  CAS  PubMed  Google Scholar 

  14. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72(9):3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Illmensee K (1978) Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. Basic Life Sci 12:3–25

    CAS  PubMed  Google Scholar 

  16. Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 21(3):364–382

    Article  CAS  PubMed  Google Scholar 

  17. Stevens LC (1964) Experimental production of testicular teratomas in mice. Proc Natl Acad Sci U S A 52:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143

    CAS  PubMed  Google Scholar 

  20. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  21. Serrano D, Bleau AM, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C et al (2011) Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer 10:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Xiao Z, Wong SK, Tin VP, Ho KY, Wang J et al (2013) Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4(10):1698–1711

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  PubMed  Google Scholar 

  24. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501

    Article  CAS  PubMed  Google Scholar 

  25. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE (2004) Concepts of human leukemic development. Oncogene 23(43):7164–7177

    Article  CAS  PubMed  Google Scholar 

  26. Early Breast Cancer Trialists’ Collaborative G (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Article  CAS  Google Scholar 

  27. Hartwig FP, Nedel F, Collares T, Tarquinio SB, Nor JE, Demarco FF (2014) Oncogenic somatic events in tissue-specific stem cells: a role in cancer recurrence? Ageing Res Rev 13:100–106

    Article  CAS  PubMed  Google Scholar 

  28. Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG et al (2013) Invasive cancers are not necessarily from preformed in situ tumours - an alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 17(7):921–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mintz B, Cronmiller C, Custer RP (1978) Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci U S A 75(6):2834–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    Article  CAS  PubMed  Google Scholar 

  31. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Perrone G, Gaeta LM, Zagami M, Nasorri F, Coppola R, Borzomati D et al (2012) In situ identification of CD44+/CD24- cancer cells in primary human breast carcinomas. PLoS One 7(9):e43110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang LB, He YQ, Wu LG, Chen DM, Fan H, Jia W (2012) Isolation and characterization of human breast tumor stem cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 28(12):1261–1264

    CAS  PubMed  Google Scholar 

  34. Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66(2):149–156

    Article  CAS  PubMed  Google Scholar 

  35. Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66(21):10233–10237

    Article  PubMed  Google Scholar 

  36. Schabath H, Runz S, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  CAS  PubMed  Google Scholar 

  37. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ et al (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C et al (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122(2):298–304

    Article  CAS  PubMed  Google Scholar 

  40. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68(19):7711–7717

    Article  CAS  PubMed  Google Scholar 

  41. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108(3):378–387

    Article  PubMed  Google Scholar 

  42. Karamboulas C, Ailles L (2013) Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta 1830(2):2481–2495

    Article  CAS  PubMed  Google Scholar 

  43. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106(33):13820–13825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15(2):253–260

    Article  PubMed  Google Scholar 

  46. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M et al (2013) TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123(3):1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  49. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  PubMed  Google Scholar 

  50. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    Article  PubMed  Google Scholar 

  52. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  53. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452

    Article  CAS  PubMed  Google Scholar 

  54. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL et al (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22(6):765–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS et al (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23(2):238–248

    Article  CAS  PubMed  Google Scholar 

  58. Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL et al (2010) The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126(5):1155–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N et al (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6(11):e26740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  61. Beier D, Schriefer B, Brawanski K, Hau P, Weis J, Schulz JB et al (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neuro-Oncol 109(1):45–52

    Article  CAS  Google Scholar 

  62. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  63. Collins LG, Haines C, Perkel R, Enck RE (2007) Lung cancer: diagnosis and management. Am Fam Physician 75(1):56–63

    PubMed  Google Scholar 

  64. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833

    Article  CAS  PubMed  Google Scholar 

  65. Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L (2010) Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102(11):1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3(8):e3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD et al (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5(11):e14062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3(7):e2637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    Article  CAS  PubMed  Google Scholar 

  71. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106(38):16281–16286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D et al (2012) Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 7(8):e42564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kijima N, Hosen N, Kagawa N, Hashimoto N, Nakano A, Fujimoto Y et al (2012) CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro-Oncology 14(10):1254–1264

    Article  CAS  PubMed  Google Scholar 

  74. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272

    Article  CAS  PubMed  Google Scholar 

  75. Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L et al (2013) Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8(3):e57020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326

    Article  CAS  PubMed  Google Scholar 

  77. Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M et al (2015) The Global Burden of Cancer 2013. JAMA Oncol 1(4):505–527

    Article  Google Scholar 

  78. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  CAS  PubMed  Google Scholar 

  79. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116

    Article  CAS  PubMed  Google Scholar 

  82. Song L, Li Y, He B, Gong Y (2015) Development of small molecules targeting the Wnt signaling pathway in cancer stem cells for the treatment of colorectal cancer. Clin Colorectal Cancer 14(3):133–145

    Article  PubMed  Google Scholar 

  83. Vermeulen L, Todaro M, de Sousa MF, Sprick MR, Kemper K, Perez Alea M et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 105(36):13427–13432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  PubMed  Google Scholar 

  85. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  CAS  PubMed  Google Scholar 

  86. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  CAS  Google Scholar 

  88. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  CAS  PubMed  Google Scholar 

  89. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  CAS  PubMed  Google Scholar 

  90. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729

    Article  CAS  PubMed  Google Scholar 

  91. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345

    Article  CAS  PubMed  Google Scholar 

  92. Swanton C (2015) Cancer evolution constrained by mutation order. N Engl J Med 372(7):661–663

    Article  CAS  PubMed  Google Scholar 

  93. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE (2004) Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103(2):545–552

    Article  CAS  PubMed  Google Scholar 

  95. Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ et al (2010) Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115(13):2610–2618

    Article  CAS  PubMed  Google Scholar 

  96. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  CAS  PubMed  Google Scholar 

  98. Nolan-Stevaux O, Tedesco D, Ragan S, Makhanov M, Chenchik A, Ruefli-Brasse A et al (2013) Measurement of cancer cell growth heterogeneity through lentiviral barcoding identifies clonal dominance as a characteristic of in vivo tumor engraftment. PLoS One 8(6):e67316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nguyen LV, Cox CL, Eirew P, Knapp DJ, Pellacani D, Kannan N et al (2014) DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat Commun 5:5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764

    Article  CAS  PubMed  Google Scholar 

  102. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    Article  PubMed  Google Scholar 

  103. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  104. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  PubMed  Google Scholar 

  105. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561

    CAS  PubMed  Google Scholar 

  106. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L et al (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350(6262):823–826

    Article  CAS  PubMed  Google Scholar 

  107. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

  108. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84

    Article  CAS  PubMed  Google Scholar 

  109. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526

    Article  CAS  PubMed  Google Scholar 

  110. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stern M, Herrmann R (2005) Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 54(1):11–29

    Article  CAS  PubMed  Google Scholar 

  112. Vennepureddy A, Singh P, Rastogi R, Atallah JP, Terjanian T (2016) Evolution of ramucirumab in the treatment of cancer - A review of literature. J Oncol Pharm Pract

    Google Scholar 

  113. Chames P, Baty D (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 1(6):539–547

    Article  PubMed  PubMed Central  Google Scholar 

  114. Muller D, Kontermann RE (2010) Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 24(2):89–98

    Article  PubMed  Google Scholar 

  115. Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA (2005) BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today 10(18):1237–1244

    Article  CAS  PubMed  Google Scholar 

  116. Wong R, Pepper C, Brennan P, Nagorsen D, Man S, Fegan C (2013) Blinatumomab induces autologous T-cell killing of chronic lymphocytic leukemia cells. Haematologica 98(12):1930–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD et al (2015) Are BiTEs the “missing link” in cancer therapy? Oncoimmunology 4(6):e1008339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20(4):972–984

    Article  CAS  PubMed  Google Scholar 

  121. Reichert JM (2010) Antibodies to watch in 2010. MAbs 2(1):84–100

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11(1):22–30

    CAS  PubMed  Google Scholar 

  124. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bakhshinyan, D. et al. (2018). Introduction to Cancer Stem Cells: Past, Present, and Future. In: Papaccio, G., Desiderio, V. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 1692. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7401-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7401-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7400-9

  • Online ISBN: 978-1-4939-7401-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics