Skip to main content
Book cover

Polyamines pp 233–256Cite as

Quantitative Trait Loci for Root Growth Response to Cadaverine in Arabidopsis

Part of the Methods in Molecular Biology book series (MIMB,volume 1694)


Root growth architecture is a major determinant of agricultural productivity and plant fitness in natural ecosystems. Here we describe the methods used in a Quantitative Trait Loci (QTL) study that allowed the identification of ORGANIC CATION TRANSPORTER 1 (OCT1) as a determinant of root growth response to cadaverine treatment in Arabidopsis thaliana. This protocol screens natural accessions to characterize the variation in root growth response to the naturally occurring polyamine cadaverine, then uses recombination mapping to identify loci that are responsible for the variation existing between two accessions with contrasting phenotypes.

Key words

  • Natural variation
  • Root architecture
  • Arabidopsis
  • Cadaverine
  • Quantitative trait loci (QTL)

This is a preview of subscription content, access via your institution.

Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Li J, Mu J, Bai J et al (2013) PARAQUAT RESISTANT1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Annu Rev Plant Physiol 162:470–483. doi:10.1104/pp.113.213892

    CrossRef  CAS  Google Scholar 

  2. Strohm AK, Vaughn LM, Masson PH (2015) Natural variation in the expression of ORGANIC CATION TRANSPORTER 1 affects root length responses to cadaverine in Arabidopsis. J Exp Bot 66:853–862. doi:10.1093/jxb/eru444

    CrossRef  PubMed  CAS  Google Scholar 

  3. Meijón M, Satbhai SB, Tsuchimatsu T, Busch W (2013) Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nature 46:77–81. doi:10.1038/ng.2824

    CrossRef  CAS  Google Scholar 

  4. Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 7:1237. doi:10.1248/cpb.48.1458

    CrossRef  Google Scholar 

  5. Blanco CA, Peeters A, Koornneef M (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271. doi:10.1046/j.1365-313x.1998.00115.x

    CrossRef  Google Scholar 

  6. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127. doi:10.1111/j.1399-3054.1965.tb06874.x

    CrossRef  CAS  Google Scholar 

  7. Clark KA, Krysan PJ (2007) Protocol: an improved high-throughput method for generating tissue samples in 96-well format for plant genotyping (Ice-Cap 2.0). Plant Methods 3:8. doi:10.1186/1746-4811-3-8

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221-222:42–47. doi:10.1016/j.plantsci.2014.01.007

    CrossRef  PubMed  CAS  Google Scholar 

  9. Rutherford R, Gallois P, Masson PH (1998) Mutations inArabidopsis thalianagenes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces. Plant J 16:145–154. doi:10.1046/j.1365-313x.1998.00279.x

    CrossRef  PubMed  CAS  Google Scholar 

  10. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  11. Meijering E, Jacob M, Sarria JCF et al (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry 58A:167–176. doi:10.1002/cyto.a.20022

    CrossRef  Google Scholar 

  12. Grabov A, Ashley MK, Rigas S et al (2004) Morphometric analysis of root shape. New Phytol 165:641–652. doi:10.1111/j.1469-8137.2004.01258.x

    CrossRef  Google Scholar 

  13. Vaughn LM, Masson PH (2011) A QTL study for regions contributing to arabidopsis thaliana root skewing on tilted surfaces. G3 1:105–115. doi:10.1534/g3.111.000331

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  15. Gross J, Ligge U ((2015)) nortest:Tests for normality. R package version 1.0–4 URL

  16. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi:10.1093/bioinformatics/btg112

    CrossRef  CAS  PubMed  Google Scholar 

  17. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Stat Biol Health doi: 10.1007/978-0-387-92125-9

    Google Scholar 

  18. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188–e188. doi:10.1093/nar/gkt780

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Czechowski T, Stitt M, Altmann T et al (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Annu Rev Plant Physiol 139:5–17. doi:10.1104/pp.105.063743

    CrossRef  CAS  Google Scholar 

  20. Visscher AM, Paul A-L, Kirst M et al (2010) Growth performance and root transcriptome remodeling of arabidopsis in response to mars-like levels of magnesium sulfate. PLoS One 5:e12348–e12316. doi:10.1371/journal.pone.0012348

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. Clark KA, Krysan PJ (2010) Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001. doi:10.1111/j.1365-313x.2010.04386.x

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  22. Salisbury FJ, Hall A, Grierson CS, Halliday KJ (2007) Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50:429–438. doi:10.1111/j.1365-313x.2007.03059.x

    CrossRef  PubMed  CAS  Google Scholar 

  23. Zhang K-X, Xu H-H, Yuan T-T et al (2013) Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. Plant J 76(2):308–321. doi:10.1111/tpj.12298

    CrossRef  PubMed  CAS  Google Scholar 

  24. Buer CS, Wasteneys GO, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Annu Rev Plant Physiol 132:1085–1096. doi:10.1104/pp.102.019182

    CrossRef  CAS  Google Scholar 

  25. Buer CS (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of arabidopsis. Annu Rev Plant Physiol 140:1384–1396. doi:10.1104/pp.105.075671

    CrossRef  CAS  Google Scholar 

  26. Pound MP, French AP, Atkinson JA et al (2013) RootNav: navigating images of complex root architectures. Annu Rev Plant Physiol 162:1802–1814. doi:10.1104/pp.113.221531

    CrossRef  CAS  Google Scholar 

  27. Russino A (2013) A novel tracking tool for the analysis of plant-root tip movements. Bioinspir Biomim 8(2):025004. doi:10.1088/1748-3190/12/1/015001

    CrossRef  PubMed  CAS  Google Scholar 

  28. Slovak R, Göschl C, Su X et al (2014) A scalable open-source pipeline for large-scale root phenotyping of arabidopsis. Plant Cell 26:2390–2403. doi:10.1105/tpc.114.124032

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  29. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. doi:10.1111/tpj.12105

    CrossRef  PubMed  CAS  Google Scholar 

  30. Lim J-H, Yang H-J, Jung K-H et al (2014) Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol Cells 37:149–160. doi:10.14348/molcells.2014.2336

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report. Third Edition (Beta Distribution 3B).

  32. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of statistics. North Carolina State University, Raleigh, NC.

    Google Scholar 

  33. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi:10.1038/nprot.2013.143

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Nature 6(23890):1–11. doi:10.1038/srep23890

    CrossRef  CAS  Google Scholar 

  35. User Bulletin #2 (1997) Relative quantitation of gene expression. Appl Biosyst Accessed 14 Mar 2017

Download references


We thank S.-H. Su, A. Jancewicz and A. Strohm for comments, advice, and/or research contribution to the material included in this manuscript. Our work was made possible by grants from the National Science Foundation (IOS-1121694), the National Aeronautics and Space Administration (NNX14AT23G), and the University of Wisconsin–Madison College of Agricultural and Life Sciences Hatch program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrick H. Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gibbs, N.M., Rouhana, L.V., Masson, P.H. (2018). Quantitative Trait Loci for Root Growth Response to Cadaverine in Arabidopsis. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols