Advertisement

Analysis of Protein Glycosylation in the ER

  • Jennifer Schoberer
  • Yun-Ji Shin
  • Ulrike Vavra
  • Christiane Veit
  • Richard Strasser
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1691)

Abstract

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum. In plants, the N-glycans play a pivotal role for protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.

Key words

N-glycosylation Glycoprotein Oligosaccharyltransferase Quality control ERAD 

Notes

Acknowledgements

We would like to thank Friedrich Altmann and Daniel Maresch (both Department of Chemistry) for LC-ESI-MS-analysis. This work was supported by grants from the Austrian Science Fund (FWF): P28218 and T655-B20.

References

  1. 1.
    Xu C, Ng DT (2015) O-mannosylation: the other glycan player of ER quality control. Semin Cell Dev Biol 41:129–134CrossRefPubMedGoogle Scholar
  2. 2.
    Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158CrossRefPubMedGoogle Scholar
  3. 3.
    Saito F, Suyama A, Oka T, Yoko-O T, Matsuoka K, Jigami Y, Shimma YI (2014) Identification of novel peptidyl serine α-galactosyltransferase gene family in plants. J Biol Chem 289:20405–20420CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437CrossRefPubMedGoogle Scholar
  6. 6.
    Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82CrossRefPubMedGoogle Scholar
  7. 7.
    Kang J, Frank J, Kang C, Kajiura H, Vikram M, Ueda A, Kim S, Bahk J, Triplett B, Fujiyama K, Lee S, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci U S A 105:5933–5938CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fanata WI, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO (2013) N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73:966–979CrossRefPubMedGoogle Scholar
  9. 9.
    Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO (2016) N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol 212:108–122CrossRefPubMedGoogle Scholar
  10. 10.
    Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818CrossRefPubMedGoogle Scholar
  11. 11.
    Farid A, Pabst M, Schoberer J, Altmann F, Glössl J, Strasser R (2011) Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth. Plant J 68:314–325CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kelleher D, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RCrossRefPubMedGoogle Scholar
  13. 13.
    Cherepanova N, Shrimal S, Gilmore R (2016) N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 41:57–65CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Koiwa H, Li F, McCully M, Mendoza I, Koizumi N, Manabe Y, Nakagawa Y, Zhu J, Rus A, Pardo J, Bressan R, Hasegawa P (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nekrasov V, Li J, Batoux M, Roux M, Chu Z, Lacombe S, Rougon A, Bittel P, Kiss-Papp M, Chinchilla D, van Esse H, Jorda L, Schwessinger B, Nicaise V, Thomma B, Molina A, Jones J, Zipfel C (2009) Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 28:3428–3438CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P (2009) Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28:3439–3449CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lerouxel O, Mouille G, Andème-Onzighi C, Bruyant M, Séveno M, Loutelier-Bourhis C, Driouich A, Höfte H, Lerouge P (2005) Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J 42:455–468CrossRefPubMedGoogle Scholar
  19. 19.
    Farid A, Malinovsky FG, Veit C, Schoberer J, Zipfel C, Strasser R (2013) Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. Plant Physiol 162:24–38CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Müller LM, Lindner H, Pires ND, Gagliardini V, Grossniklaus U (2016) A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nat Commun 7:10826CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589:3379–3387CrossRefPubMedGoogle Scholar
  22. 22.
    Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert G, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vembar S, Brodsky J (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hüttner S, Veit C, Vavra U, Schoberer J, Liebminger E, Maresch D, Grass J, Altmann F, Mach L, Strasser R (2014) Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins. Plant Cell 26:1712–1728CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu Y, Li J (2014) Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front Plant Sci 5:162PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hüttner S, Veit C, Schoberer J, Grass J, Strasser R (2012) Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins. Plant Mol Biol 79:21–33CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116CrossRefPubMedGoogle Scholar
  28. 28.
    Liebminger E, Grass J, Jez J, Neumann L, Altmann F, Strasser R (2012) Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry 84:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schoberer J, Runions J, Steinkellner H, Strasser R, Hawes C, Osterrieder A (2010) Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 11:1429–1444CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jin H, Yan Z, Nam K, Li J (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gruber C, Altmann F (2015) Site-specific glycosylation profiling using liquid chromatography-tandem mass spectrometry (LC-MS). Methods Mol Biol 1321:407–415CrossRefPubMedGoogle Scholar
  32. 32.
    Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605PubMedGoogle Scholar
  33. 33.
    Clerc S, Hirsch C, Oggier D, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Su W, Liu Y, Xia Y, Hong Z, Li J (2012) The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases. Mol Plant 5:929–940CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zielinska DF, Gnad F, Schropp K, Wiśniewski JR, Mann M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548CrossRefPubMedGoogle Scholar
  37. 37.
    de Oliveira MVV, Xu G, Li B, de Souza Vespoli L, Meng X, Chen X, Yu X, de Souza SA, Intorne AC, de A. Manhães AME, Musinsky AL, Koiwa H, de Souza Filho GA, Shan L, He P (2016) Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nat Plants 2:15218CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hori H, Elbein AD (1981) Tunicamycin inhibits protein glycosylation in suspension cultured soybean cells. Plant Physiol 67:882–886CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Veit C, Vavra U, Strasser R (2015) N-glycosylation and plant cell growth. Methods Mol Biol 1242:183–194CrossRefPubMedGoogle Scholar
  40. 40.
    Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R (2014) The transmembrane domain of N-acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation. Plant J 80:809–822CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hong Z, Jin H, Tzfira T, Li J (2008) Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418–3429CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hüttner S, Veit C, Vavra U, Schoberer J, Dicker M, Maresch D, Altmann F, Strasser R (2014) A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochem J 464:401–411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jennifer Schoberer
    • 1
  • Yun-Ji Shin
    • 1
  • Ulrike Vavra
    • 1
  • Christiane Veit
    • 1
  • Richard Strasser
    • 1
  1. 1.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations