Abstract
Solid-state NMR (SSNMR) is a powerful tool for the elucidation of structure and dynamics in biological macromolecules. Over the years, SSNMR spectroscopists have developed an array of techniques enabling the measurement of internuclear correlations, distances, and torsional angles; these have been applied to the study of a number of biological systems that are difficult to study by X-ray crystallography and solution NMR, including key biological targets such as membrane proteins and amyloid fibrils. Applications of SSNMR to other topic areas, including materials science, pharmaceuticals, and small molecules, have also flourished in recent years. These studies, however, have always been hampered by the low inherent sensitivity of SSNMR, requiring large amounts of both sample and time for data collection. By taking advantage of unpaired electrons doped into a sample as a ready source of additional nuclear polarization, dynamic nuclear polarization (DNP) has brought about large improvements in SSNMR sensitivity. These, in turn, have enabled structural studies of previously inaccessible targets, such as large protein complexes, nucleic acids, viral capsids, and membrane proteins in vivo. Herein, we focus on sample preparation strategies and considerations for scientists interested in applying DNP to challenging systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hirsch ML, Kalechofsky N, Belzer A et al (2015) Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc 137(26):8428–8434. doi:10.1021/jacs.5b01252
Sauvée C, Rosay M, Casano G et al (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed 52:10858–10861. doi:10.1002/anie.201304657
Smith AN, Caporini MA, Fanucci GE, Long JR (2015) A method for dynamic nuclear polarization enhancement of membrane proteins. Angew Chem Int Ed 54:1542–1546. doi:10.1002/anie.201410249
Ni QZ, Daviso E, Can TV et al (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:1933–1941. doi:10.1021/ar300348n
Su Y, Andreas L, Griffin RG (2015) Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection. Annu Rev Biochem 84:465–497. doi:10.1146/annurev-biochem-060614-034206
Cheng C-Y, Han S (2013) Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems. Annu Rev Phys Chem 64:507–532. doi:10.1146/annurev-physchem-040412-110028
Kaplan M, Pinto C, Houben K, Baldus M (2016) Nuclear magnetic resonance (NMR) applied to membrane–protein complexes. Q Rev Biophys 49:e15. doi:10.1017/S003358351600010X
Warnet XL, Arnold AA, Marcotte I, Warschawski DE (2015) In-cell solid-state NMR: an emerging technique for the study of biological membranes. Biophys J 109:2461–2466. doi:10.1016/j.bpj.2015.10.041
Lee D, Hediger S, De Paëpe G (2015) Is solid-state NMR enhanced by dynamic nuclear polarization? Solid State Nucl Magn Reson 66:6–20. doi:10.1016/j.ssnmr.2015.01.003
Lee D, Bouleau E, Saint-Bonnet P et al (2016) Ultra-low temperature MAS-DNP. J Magn Reson 264:116–124. doi:10.1016/j.jmr.2015.12.010
Hu KN (2011) Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl Magn Reson 40:31–41. doi:10.1016/j.ssnmr.2011.08.001
Smith AN, Long JR (2016) Dynamic nuclear polarization as an enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy. Anal Chem 88:122–132. doi:10.1021/acs.analchem.5b04376
Akbey Ü, Oschkinat H (2016) Structural biology applications of solid state MAS DNP NMR. J Magn Reson 269:213–224. doi:10.1016/j.jmr.2016.04.003
Bruun S, Stoeppler D, Keidel A et al (2015) Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry 54:5389–5400. doi:10.1021/acs.biochem.5b00597
Salnikov ES, Aisenbrey C, Aussenac F et al (2016) Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by dynamic nuclear polarization/solid-state NMR spectroscopy. Sci Rep 6:20895. doi:10.1038/srep20895
Yamamoto K, Caporini MA, Im S-C et al (2015) Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. Biochim Biophys Acta Biomembr 1848:342–349. doi:10.1016/j.bbamem.2014.07.008
Williams JK, Tietze D, Lee M et al (2016) Solid-state NMR investigation of the conformation, proton conduction, and hydration of the influenza B virus M2 transmembrane proton channel. J Am Chem Soc 138:8143–8155. doi:10.1021/jacs.6b03142
Frederick KK, Michaelis VK, Corzilius B et al (2015) Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163:620–628. doi:10.1016/j.cell.2015.09.024
Fricke P, Mance D, Chevelkov V et al (2016) High resolution observed in 800??MHz DNP spectra of extremely rigid type III secretion needles. J Biomol NMR 65:121–126. doi:10.1007/s10858-016-0044-y
Torrezan AC, Shapiro MA, Sirigiri JR et al (2011) Operation of a continuously frequency-tunable second-harmonic CW 330-GHz Gyrotron for dynamic nuclear polarization. IEEE Trans Electron Devices 58:2777–2783. doi:10.1109/TED.2011.2148721
Wollan DS (1976) Dynamic nuclear polarization with an inhomogeneously broadened ESR line. II. Experiment. Phys Rev B 13:3686–3696
Song C, Hu K-NN, Joo C-GG et al (2006) TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J Am Chem Soc 128:11385–11390. doi:10.1021/ja061284b
Wenk P, Kaushik M, Richter D et al (2015) Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J Biomol NMR 63:97–109. doi:10.1007/s10858-015-9972-1
Mathies G, Caporini MA, Michaelis VK et al (2015) Efficient dynamic nuclear polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. Angew Chem Int Ed 54:11770–11774. doi:10.1002/anie.201504292
Zagdoun A, Rossini AJ, Conley MP et al (2013) Improved dynamic nuclear polarization surface-enhanced NMR spectroscopy through controlled incorporation of deuterated functional groups. Angew Chem Int Ed 52:1222–1225. doi:10.1002/anie.201208699
Barnes AB, De Paëpe G, van der Wel PCA et al (2008) High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson 34:237–263. doi:10.1007/s00723-008-0129-1
Elisei E, Filibian M, Carretta P et al (2015) Dynamic nuclear polarization of a glassy matrix prepared by solid state mechanochemical amorphization of crystalline substances. Chem Commun 51:2080–2083. doi:10.1039/C4CC08348B
Schrader AM, Cheng CY, Israelachvili JN, Han S (2016) Communication: contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. J Chem Phys 145(4):041101. doi:10.1063/1.4959904
Matsuki Y, Takahashi H, Ueda K et al (2010) Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Phys Chem Chem Phys 12:5799–5803. doi:10.1039/C002268C
Meyer B (1971) Low temperature spectroscopy. American Elsevier Publ. Comp, New York
Gupta R, Lu M, Hou G et al (2016) Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. J Phys Chem B 120:329–339. doi:10.1021/acs.jpcb.5b12134
Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE (2017) Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. Proc Natl Acad Sci USA 114 (20):5171–5176. doi:10.1073/pnas.1701484114
Chaudhari S, Berruyer P, Gajan D et al (2016) Dynamic nuclear polarization at 40 kHz magic angle spinning. Phys Chem Chem Phys 18:10616–10622. doi:10.1039/C6CP00839A
Kaplan M, Cukkemane A, van Zundert GCP et al (2015) Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nat Methods 12:5–9. doi:10.1038/nmeth.3406
Kubicki DJ, Casano G, Schwarzwälder M et al (2016) Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem Sci 7:550–558. doi:10.1039/C5SC02921J
Le D, Ziarelli F, Phan TNT et al (2015) Up to 100% improvement in dynamic nuclear polarization solid-state NMR sensitivity enhancement of polymers by removing oxygen. Macromol Rapid Commun 36:1416–1421. doi:10.1002/marc.201500133
Kubicki DJ, Rossini AJ, Purea A et al (2014) Amplifying dynamic nuclear polarization of frozen solutions by incorporating dielectric particles. J Am Chem Soc 136:15711–15718. doi:10.1021/ja5088453
Liao SY, Lee M, Wang T et al (2016) Efficient DNP NMR of membrane proteins : sample preparation protocols , sensitivity , and radical location. J Biomol NMR 64(3):223–237. doi:10.1007/s10858-016-0023-3
Cady S, Wang T, Hong M (2011) Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein. J Am Chem Soc 133:11572–11579. doi:10.1021/ja202051n
Lesage A, Lelli M, Gajan D et al (2010) Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 132:15459–15461. doi:10.1021/ja104771z
Lelli M, Chaudhari SR, Gajan D et al (2015) Solid-state dynamic nuclear polarization at 9.4 and 18.8 T from 100 K to room temperature. J Am Chem Soc 137:14558–14561. doi:10.1021/jacs.5b08423
Koers EJ, Lõpez-Deber MP, Weingarth M et al (2013) Dynamic nuclear polarization NMR spectroscopy: revealing multiple conformations in lipid-anchored peptide vaccines. Angew Chem Int Ed 52:10905–10908. doi:10.1002/anie.201303374
Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486. doi:10.1016/S1090-7807(03)00082-X
Smith AA, Corzilius B, Barnes AB et al (2012) Solid effect dynamic nuclear polarization and polarization pathways. J Chem Phys 136(1):015101. doi:10.1063/1.3670019
Corzilius B, Andreas LB, Smith AA et al (2014) Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. J Magn Reson 240:113–123. doi:10.1016/j.jmr.2013.11.013
Mentink-Vigier F, Paul S, Lee D et al (2015) Nuclear depolarization and absolute sensitivity in magic-angle spinning cross-effect dynamic nuclear polarization. Phys Chem Chem Phys 17(34):21824–21836. doi:10.1039/C5CP03457D
Takahashi H, Fernández-De-Alba C, Lee D et al (2014) Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments. J Magn Reson 239:91–99. doi:10.1016/j.jmr.2013.12.005
Acknowledgment
The authors would like to thank Dr. James Kempf, Dr. Shane Pawsey, Bryce Smith, and Christopher Hickey of Bruker Biospin for many helpful discussions, figures, and photographs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Itin, B., Sergeyev, I.V. (2018). Strategies for Efficient Sample Preparation for Dynamic Nuclear Polarization Solid-State NMR of Biological Macromolecules. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7386-6_7
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7385-9
Online ISBN: 978-1-4939-7386-6
eBook Packages: Springer Protocols