Skip to main content
Book cover

Protein NMR pp 99–109Cite as

Spherical Nanoparticle Supported Lipid Bilayers: A Tool for Modeling Protein Interactions with Curved Membranes

  • Protocol
  • First Online:
  • 2698 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

Mechanistic studies of protein-membrane interactions can be complicated by the limitations of the membrane model system chosen. Many of these limitations can be overcome by using a spherical silica nanoparticle to support the membrane. In this chapter, we present a detailed protocol for the construction of spherical nanoparticle supported lipid bilayers (SSLBs), with discussion of methods to improve production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Bio 5:121–132

    Article  CAS  Google Scholar 

  2. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Bio 10:458–467

    Article  CAS  Google Scholar 

  3. Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–566

    Article  CAS  PubMed  Google Scholar 

  4. Nath S et al (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 16:821–821

    Article  CAS  Google Scholar 

  5. Ramamurthi KS, Lecuyer S, Stone HA, Losick R (2009) Geometric cue for protein localization in a bacterium. Science 323:1354–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lenarcic R et al (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Larsen JB et al (2015) Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat Chem Biol 11:192–U176

    Article  CAS  PubMed  Google Scholar 

  8. Gill RL et al (2015) Structural basis for the geometry-driven localization of a small protein. Proc Natl Acad Sci USA 112:E1908–E1915

    Google Scholar 

  9. Fu R et al (2015) Spherical nanoparticle supported lipid bilayers for the structural study of membrane-curvature sensitive molecules. J Am Chem Soc 137:14031–14034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kallick DA, Tessmer MR, Watts CR, Li CY (1995) The use of dodecylphosphocholine micelles in solution NMR. J Magn Reson B 109:60–65

    Article  CAS  PubMed  Google Scholar 

  11. Sanders CR, Hare BJ, Howard KP, Prestegard JH (1994) Magnetically-oriented phopholipid micelles as a tool for the study of membrane associated molecules. Prog NMR Spectrosc 26:421–444

    Article  CAS  Google Scholar 

  12. Nath A, Atkins WM, Sligar SG (2007) Application of phospholipid bilayer nanodics in the study of membrane and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  PubMed  Google Scholar 

  13. Cruciani O et al (2006) An improved NMR study of liposomes using 1-palmitoyl-2-oleoyl-sn-glycero-3-phospatidylcholine as model. Molecules 11:334–344

    Article  CAS  PubMed  Google Scholar 

  14. Larsen J, Hatzakis NS, Stamou D (2011) Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes. J Am Chem Soc 133:10685–10687

    Article  CAS  PubMed  Google Scholar 

  15. Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. Chembiochem 11:848–865

    Article  CAS  PubMed  Google Scholar 

  16. Bayerl TM, Bloom M (1990) Physical properties of single phospholipid bilayers adsorbed to micro glass beads. Biophys J 58:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buranda T et al (2003) Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology. Langmuir 19:1654–1663

    Article  CAS  Google Scholar 

  18. Savarala S, Ahmed S, Ilies MA, Wunder SL (2010) Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads. Langmuir 26:12081–12088

    Article  CAS  PubMed  Google Scholar 

  19. Mornet S, Lambert O, Duguet E, Brisson A (2005) The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett 5:281–285

    Article  CAS  PubMed  Google Scholar 

  20. Naumann C, Brumm T, Bayerl TM (1992) Phase transition behavior of single phosphatidylcholine bilayers on a solid spherical support studied by DSC, NMR and FT-IR. Biophys J 63:1314–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolainsky C, Unger M, Bloom M, Bayerl TM (1995) Two-dimensional exchange 2H NMR experiments of phospholipid bilayers on a spherical solid support. Phys Rev E 51:4743–4750

    Article  CAS  Google Scholar 

  22. Bunge A et al (2009) Characterization of lipid bilayers adsorbed on spherical LbL-support. Soft Matter 5:3331–3339

    Article  CAS  Google Scholar 

  23. Nordlund G, Lonneborg R, Brzezinski P (2009) Formation of supported lipid bilayers on silica particles studied using flow cytometry. Langmuir 25:4601–4606

    Article  CAS  PubMed  Google Scholar 

  24. Baksh MM, Jaros M, Groves JT (2004) Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427:139–141

    Article  CAS  PubMed  Google Scholar 

  25. Picard F, Paquet MJ, Dufourc EJ, Auger M (1998) Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: A 31P two-dimensional exchange solid-state NMR study. Biophys J 74:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    Article  CAS  PubMed  Google Scholar 

  27. Reinl HM, Bayerl TM (1993) Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Biochim Biophys Acta 1151:127–136

    Article  CAS  PubMed  Google Scholar 

  28. Galneder R et al (2001) Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophys J 80:2298–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gopalakrishnan G, Rouiller I, Colman DR, Lennox RB (2009) Supported bilayers formed from different phospholipids on spherical silica substrates. Langmuir 25:5455–5458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Nissan Chemical Industries, Ltd. for 50 and 100 nm silicon beads. This work was supported by the National Institutes of Health NIGMS (R01GM105963 to F.T.) and the Four Diamonds Fund. This project also is funded, in part, under a grant with the Pennsylvania Department of Health using Tobacco CURE Funds. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tyndall, E.R., Tian, F. (2018). Spherical Nanoparticle Supported Lipid Bilayers: A Tool for Modeling Protein Interactions with Curved Membranes. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics