Skip to main content

Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins

  • Protocol
  • First Online:
Protein NMR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M (2009) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131(1):170–176. doi:10.1021/ja806306e

    Article  CAS  PubMed  Google Scholar 

  2. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102. doi:10.1038/nature01070

    Article  CAS  PubMed  Google Scholar 

  3. Gustavsson M, Verardi R, Mullen DG, Mote KR, Traaseth NJ, Gopinath T, Veglia G (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci USA 110(43):17338–17343. doi:10.1073/pnas.1303006110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24. doi:10.1146/annurev-physchem-032511-143731

    Article  CAS  PubMed  Google Scholar 

  5. Hu F, Luo W, Hong M (2010) Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330(6003):505–508. doi:10.1126/science.1191714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26. doi:10.1016/j.pnmrs.2014.07.001

    Article  PubMed  Google Scholar 

  7. Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. doi:10.1146/annurev-biophys-083012-130326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zachariae U, Schneider R, Briones R, Gattin Z, Demers JP, Giller K, Maier E, Zweckstetter M, Griesinger C, Becker S, Benz R, de Groot BL, Lange A (2012) β-barrel mobility underlies closure of the voltage-dependent anion channel. Structure 20(9):1540–1549. doi:10.1016/j.str.2012.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vostrikov VV, Gustavsson M, Gopinath T, Mullen D, Dicke AA, Truong V, Veglia G (2016) Ca2+ ATPase conformational transitions in lipid bilayers mapped by site-directed Ethylation and solid-state NMR. ACS Chem Biol 11(2):329–334. doi:10.1021/acschembio.5b00953

    Article  CAS  PubMed  Google Scholar 

  10. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403. doi:10.1146/annurev.biophys.050708.133719

    Article  CAS  PubMed  Google Scholar 

  11. Mainz A, Peschek J, Stavropoulou M, Back KC, Bardiaux B, Asami S, Prade E, Peters C, Weinkauf S, Buchner J, Reif B (2015) The chaperone alphaB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol 22(11):898–905. doi:10.1038/nsmb.3108

    CAS  PubMed  Google Scholar 

  12. Gor’kov PL, Chekmenev EY, Li C, Cotten M, Buffy JJ, Traaseth NJ, Veglia G, Brey WW (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185(1):77–93. doi:10.1016/j.jmr.2006.11.008

    Article  PubMed  Google Scholar 

  13. McNeill SA, Gor’kov PL, Shetty K, Brey WW, Long JR (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144. doi:10.1016/j.jmr.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Stringer JA, Bronnimann CE, Mullen CG, Zhou DH, Stellfox SA, Li Y, Williams EH, Rienstra CM (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173(1):40–48. doi:10.1016/j.jmr.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Maly T, Debelouchina GT, Bajaj VS, Hu KN, Joo CG, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PC, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128(5):052211. doi:10.1063/1.2833582

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wickramasinghe NP, Parthasarathy S, Jones CR, Bhardwaj C, Long F, Kotecha M, Mehboob S, Fung LW, Past J, Samoson A, Ishii Y (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries. Nat Methods 6(3):215–218. doi:10.1038/nmeth.1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed Engl 45(23):3878–3881. doi:10.1002/anie.200600328

    Article  CAS  PubMed  Google Scholar 

  18. Chevelkov V, Xiang S, Giller K, Becker S, Lange A, Reif B (2015) Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization. J Biomol NMR 61(2):151–160. doi:10.1007/s10858-015-9902-2

    Article  CAS  PubMed  Google Scholar 

  19. Fu R, Brey WW, Shetty K, Gor'kov P, Saha S, Long JR, Grant SC, Chekmenev EY, Hu J, Gan Z, Sharma M, Zhang F, Logan TM, Bruschweller R, Edison A, Blue A, Dixon IR, Markiewicz WD, Cross TA (2005) Ultra-wide bore 900 MHz high-resolution NMR at the national high magnetic field laboratory. J Magn Reson 177(1):1–8. doi:10.1016/j.jmr.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  20. Gopinath T, Veglia G (2012) Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed Engl 51(11):2731–2735. doi:10.1002/anie.201108132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopinath T, Veglia G (2013) Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 138(18):184201. doi:10.1063/1.4803126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gopinath T, Veglia G (2016) Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): how far can we push residual spin polarization in solid-state NMR? J Magn Reson 267:1–8. doi:10.1016/j.jmr.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gopinath T, Veglia G (2016) Orphan spin polarization: a catalyst for high-throughput solid-state NMR spectroscopy of proteins. Annu Rep NMR Spectrosc 89:103–121

    Article  CAS  Google Scholar 

  24. Mote KR, Gopinath T, Veglia G (2013) Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. J Biomol NMR 57(2):91–102. doi:10.1007/s10858-013-9766-2

    Article  CAS  PubMed  Google Scholar 

  25. Pines A, Gibby GM, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  CAS  Google Scholar 

  26. Kupce E, Kay LE, Freeman R (2010) Detecting the “afterglow” of 13C NMR in proteins using multiple receivers. J Am Chem Soc 132(51):18008–18011. doi:10.1021/ja1080025

    Article  CAS  PubMed  Google Scholar 

  27. Bellstedt P, Herbst C, Hafner S, Leppert J, Gorlach M, Ramachandran R (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54(4):325–335. doi:10.1007/s10858-012-9680-z

    Article  CAS  PubMed  Google Scholar 

  28. Banigan JR, Traaseth NJ (2012) Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 116(24):7138–7144. doi:10.1021/jp303269m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49. doi:10.1016/j.jmr.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  30. Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J Am Chem Soc 125(51):15831–15836. doi:10.1021/ja037315+

    Article  CAS  PubMed  Google Scholar 

  31. Buck B, Zamoon J, Kirby TL, DeSilva TM, Karim C, Thomas D, Veglia G (2003) Overexpression, purification, and characterization of recombinant Ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30(2):253–261

    Article  CAS  PubMed  Google Scholar 

  32. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(16):6951–6958. doi:10.1063/1.470372

    Article  CAS  Google Scholar 

  33. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128(5):2042–2053

    Article  CAS  Google Scholar 

  34. Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20(3):203–221.

    Article  CAS  PubMed  Google Scholar 

  35. Franks WT, Kloepper KD, Wylie BJ, Rienstra CM (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39(2):107–131. doi:10.1007/s10858-007-9179-1

    Article  CAS  PubMed  Google Scholar 

  36. Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150(1):81–99. doi:10.1006/jmre.2001.2310

    Article  CAS  PubMed  Google Scholar 

  37. Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637. doi:10.1016/S0009-2614(01)00791-6

    Article  CAS  Google Scholar 

  38. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Institute of Health (GM 64742 and GM 72701 to G. V.). All of the NMR Experiments were carried out at the Minnesota NMR Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gopinath, T., Veglia, G. (2018). Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics