Protein NMR pp 257-310 | Cite as

From Raw Data to Protein Backbone Chemical Shifts Using NMRFx Processing and NMRViewJ Analysis

Part of the Methods in Molecular Biology book series (MIMB, volume 1688)


Assignment of the chemical shifts of the backbone atoms (HN, N, CA, CB, and C) of proteins is often a prerequisite to using NMR information in the study of proteins. These chemical shifts and their perturbations are the basis for the analysis of protein dynamics, ligand binding, and backbone conformation. They are generally assigned prior to full side-chain assignments and the determination of the complete three-dimensional molecular structure. This chapter describes the use of two software packages, NMRFx Processor and NMRViewJ, in going from raw NMR data to backbone assignments. The step-by-step procedure describes processing of the data and the use of manual and automated features of the RunAbout tool in NMRViewJ to perform the assignments.

Key words

Nuclear magnetic resonance (NMR) Chemical shifts Backbone assignments NMRViewJ NMRFx Processor 



This work was supported in part by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (P50 GM 103297 to B.A.J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Palmer AG III (2009) A topical issue: NMR investigations of molecular dynamics. J Biomol NMR 45(1–2):1–4. doi: 10.1007/s10858-009-9345-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Stark JL, Powers R (2012) Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem 326:1–34. doi: 10.1007/128_2011_213 PubMedGoogle Scholar
  3. 3.
    Hafsa NE, Wishart DS (2014) CSI 2.0: a significantly improved version of the Chemical Shift Index. J Biomol NMR 60(2–3):131–146. doi: 10.1007/s10858-014-9863-x CrossRefPubMedGoogle Scholar
  4. 4.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefPubMedGoogle Scholar
  5. 5.
    Hoch J, Stern A (1985) The Rowland NMR Toolkit. Rowland Institute for Science Technical Memorandum RIS-18tGoogle Scholar
  6. 6.
    Bartels C, Xia TH, Billeter M, Guntert P, Wuthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6(1):1–10. doi: 10.1007/BF00417486 CrossRefPubMedGoogle Scholar
  7. 7.
  8. 8.
    Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. doi: 10.1093/bioinformatics/btu830 CrossRefPubMedGoogle Scholar
  9. 9.
    Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696. doi: 10.1002/prot.20449 CrossRefPubMedGoogle Scholar
  10. 10.
    Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66(2):111–124. doi: 10.1007/s10858-016-0060-y CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5(3):e1000307. doi: 10.1371/journal.pcbi.1000307 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grishaev A, Llinas M (2002) CLOUDS, a protocol for deriving a molecular proton density via NMR. Proc Natl Acad Sci USA 99(10):6707–6712. doi: 10.1073/pnas.082114199 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jung YS, Sharma M, Zweckstetter M (2004) Simultaneous assignment and structure determination of protein backbones by using NMR dipolar couplings. Angew Chem Int Ed Engl 43(26):3479–3481. doi: 10.1002/anie.200353588 CrossRefPubMedGoogle Scholar
  14. 14.
    Vitek O, Bailey-Kellogg C, Craig B, Kuliniewicz P, Vitek J (2005) Reconsidering complete search algorithms for protein backbone NMR assignment. Bioinformatics 21(Suppl 2):ii230–ii236. doi: 10.1093/bioinformatics/bti1138 CrossRefPubMedGoogle Scholar
  15. 15.
    Bartels C, Billeter M, Guntert P, Wuthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7(3):207–213. doi: 10.1007/BF00202037 CrossRefPubMedGoogle Scholar
  16. 16.
    Norris M, Fetler B, Marchant J, Johnson BA (2016) NMRFx Processor: a cross-platform NMR data processing program. J Biomol NMR 65(3–4):205–216. doi: 10.1007/s10858-016-0049-6 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson B (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. doi: 10.1385/1-59259-809-9:313 PubMedGoogle Scholar
  18. 18.
    Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614CrossRefPubMedGoogle Scholar
  19. 19.
    Cavanagh J, Fairbrother W, Palmer A, Rance M, Skelton N (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic, Amsterdam, The NetherlandsGoogle Scholar
  20. 20.
    Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Focus on structural biology, Vol 5. Springer, DordrechtGoogle Scholar
  21. 21.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140CrossRefPubMedGoogle Scholar
  22. 22.
    Otting G, Widmer H, Wagner G, Wuthrich K (1986) Origin of t1 and t2 ridges in 2D NMR-spectra and procedures for suppression. J Magn Reson 66(1):187–193. doi:10.1016/0022-2364(86)90122-8Google Scholar
  23. 23.
    Sun S, Gill M, Li Y, Huang M, Byrd RA (2015) Efficient and generalized processing of multidimensional NUS NMR data: the NESTA algorithm and comparison of regularization terms. J Biomol NMR 62(1):105–117. doi: 10.1007/s10858-015-9923-x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kazimierczuk K, Orekhov V (2015) Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn Reson Chem 53(11):921–926. doi: 10.1002/mrc.4284 CrossRefPubMedGoogle Scholar
  25. 25.
    Ying J, Delaglio F, Torchia DA, Bax A (2016) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR. doi: 10.1007/s10858-016-0072-7
  26. 26.
    Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New YorkGoogle Scholar
  27. 27.
    Ulrich E, Akutsu H, Doreleijers J, Harano Y, Ioannidis Y, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C, Tolmie D, Kent Wenger R, Yao H, Markley J (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408. doi: 10.1093/nar/gkm957 PubMedGoogle Scholar
  28. 28.
    Friedrichs MS, Mueller L, Wittekind M (1994) An automated procedure for the assignment of protein 1HN, 15N, 13Cα, 1Hα, 13Cβ and 1Hβ resonances. J Biomol NMR 4(5):703–726CrossRefPubMedGoogle Scholar
  29. 29.
    Lin G, Tegos T, Chen ZZ (2005) Heuristic search in constrained bipartite matching with applications to protein NMR backbone resonance assignment. J Bioinforma Comput Biol 3(6):1331–1350CrossRefGoogle Scholar
  30. 30.
    Schmidt E, Guntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134(30):12817–12829. doi: 10.1021/ja305091n CrossRefPubMedGoogle Scholar
  31. 31.
    Jenetics: Java Genetic Algorithm Library, http://jenetics.ioGoogle Scholar
  32. 32.
    Juneau J, Baker J, Wierzbicki F, Soto LM, Ng V (2010) The definitive guide to Jython. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52(4):315–327CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Becker S, Bobin J, Candès E (2011) NESTA: a fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci 41:1–39CrossRefGoogle Scholar
  35. 35.
    Wang L, Eghbalnia H, Bahrami A, Markley J (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32(1):13–22. doi: 10.1007/s10858-005-1717-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkUSA
  2. 2.One Moon Scientific, Inc.WestfieldUSA

Personalised recommendations