Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA

  • Alexis A. Smith
  • Xiuli Yang
  • Erol Fikrig
  • Utpal Pal
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)


Borrelia burgdorferi is maintained in nature by a tick-rodent infection cycle where it traverses and colonizes a variety of host and vector tissues. A tick-borne murine model has been developed to study Lyme disease in the laboratory, which has a substantial impact in advancing our knowledge of spirochete infectivity and pathogenesis. Here, we detail a microinjection-based method for rapid and efficient infection of ticks with B. burgdorferi. While laboratory generation of B. burgdorferi-infected nymphs via natural larval engorgement on infected hosts and subsequent molting could take several weeks to months, the microinjection-based infection procedure requires only a few hours to generate infected ticks and allows introduction of defined quantities of spirochetes, including mutant isolates that are attenuated for infection in mice and thus cannot be naturally acquired by ticks. We also describe a quantitative PCR-based protocol for the measurement of B. burgdorferi in tick and murine hosts targeting spirochete RNA that is highly efficient, reproducible, and a better surrogate of active infection.

Key words

Tick artificial infection microinjection B. burgdorferi burden Quantitative PCR 



We sincerely thank our collaborators and members of our laboratory, in particular, Frank Yang, Manish Kumar, Adam Coleman, John Anderson, Toru Kariu, Brian Backstedt, for their assistance with developing the protocols presented in this chapter. This work was supported by funding from University of Maryland, College Park as well as grants from the National Institute of Allergy and Infectious Diseases, Award Numbers AI080615, AI106059 and AI116620 to UP.


  1. 1.
    Barthold SW, DeSouza M, Fikrig E, Persing DH (1992) Lyme borreliosis in the laboratory mouse. In: Schuster SE (ed) Lyme disease. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 223–242Google Scholar
  2. 2.
    Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD (1990) Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162:133–138CrossRefPubMedGoogle Scholar
  3. 3.
    Barthold SW, deSouza MS, Janotka JL, Smith AL, Persing DH (1993) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143:959–971PubMedPubMedCentralGoogle Scholar
  4. 4.
    Barthold SW, Diego C, Philipp MT (2010) Animal models of Borreliosis. In: Samuels DS, Radolf JD (eds) Borrelia, molecular biology. Host Interaction and Pathogenesis. Caister Academic Press, Norfolk, UK, pp 353–405Google Scholar
  5. 5.
    Kariu T, Coleman AS, Anderson JF, Pal U (2011) Methods for rapid transfer and localization of lyme disease pathogens within the tick gut (in eng). J Vis Exp pii:2544.  10.3791/2544 Google Scholar
  6. 6.
    Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kariu T, Smith A, Yang X, Pal U (2013) A chitin Deacetylase-like protein is a predominant constituent of tick Peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector (in eng). PLoS One 8:e78376. doi: 10.1371/journal.pone.0078376 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kung F, Kaur S, Smith AA, Yang X, Wilder CN, Sharma K, Buyuktanir O, Pal U (2016) A Borrelia burgdorferi surface-exposed Transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J Infect Dis 213:1786–1795. doi: 10.1093/infdis/jiw013 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468. doi: 10.1016/j.cell.2004.10.027 CrossRefPubMedGoogle Scholar
  10. 10.
    Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, Anguita J, Pal U (2016) Cross-species interferon signaling boosts Microbicidal activity within the tick vector. Cell Host Microbe 20:91–98CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang X, Qin J, Promnares K, Kariu T, Anderson JF, Pal U (2013) Novel microbial virulence factor triggers murine lyme arthritis. J Infect Dis 207:907–918CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang X, Smith AA, Williams MS, Pal U (2014) A Dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J Biol Chem 289:12813–12822CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang X, Yang X, Kumar M, Pal U (2009) BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle (in eng). J Infect Dis 200:1318–1330CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Samuels DS, Radolf JD (eds) (2010) Borrelia, molecular biology, host interaction and pathogenesis. Caister Academic Press, Norfolk, UKGoogle Scholar
  15. 15.
    Kariu T, Sharma K, Singh P, Smith AA, Backstedt B, Buyuktanir O, Pal U (2015) BB0323 and novel virulence determinant BB0238: Borrelia burgdorferi proteins that interact with and stabilize each other and are critical for infectivity. J Infect Dis 211:462–471CrossRefPubMedGoogle Scholar
  16. 16.
    Kariu T, Yang X, Marks CB, Zhang X, Pal U (2013) Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 88:510–522CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kumar M, Yang X, Coleman AS, Pal U (2010) BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis 201:1084–1095. doi: 10.1086/651172 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nogueira SV, Smith AA, Qin JH, Pal U (2012) A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Infect Immun 80:82–90CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U (2009) Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74:112–125CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang X, Hegde S, Shroder DY, Smith AA, Promnares K, Neelakanta G, Anderson JF, Fikrig E, Pal U (2013) The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naive hosts (in eng). Microbes Infect 15:729–737CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang X, Lenhart TR, Kariu T, Anguita J, Akins DR, Pal U (2010) Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect Immun 78:4477–4487CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang X, Lin YP, Heselpoth RD, Buyuktanir O, Qin J, Kung F, Nelson DC, Leong JM, Pal U (2016) Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection. Cell Microbiol 18:97–110CrossRefPubMedGoogle Scholar
  23. 23.
    Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U (2011) Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 10:4556–4566. doi: 10.1021/pr200395b CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ye M, Sharma K, Thakur M, Smith AA, Buyuktanir O, Xiang X, Yang X, Promnares K, Lou Y, Yang XF, Pal U (2016) HtrA, a temperature- and stationary phase-activated protease involved in maturation of a key microbial virulence determinant, facilitates Borrelia burgdorferi infection in mammalian hosts. Infect Immun 84:2372–2381CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Alexis A. Smith
    • 1
  • Xiuli Yang
    • 1
  • Erol Fikrig
    • 2
    • 3
  • Utpal Pal
    • 4
    • 5
  1. 1.Department of Veterinary MedicineUniversity of MarylandCollege ParkUSA
  2. 2.Section of Infectious Diseases, Department of Internal MedicineYale University School of MedicineNew HavenUSA
  3. 3.Howard Hughes Medical InstituteChevy ChaseUSA
  4. 4.Department of Veterinary MedicineUniversity of MarylandCollege ParkUSA
  5. 5.Virginia-Maryland Regional College of Veterinary MedicineCollege ParkUSA

Personalised recommendations