Advertisement

Trace Element Analysis of Borrelia burgdorferi by Inductively Coupled Plasma-Sector Field Mass Spectrometry

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)

Abstract

Transition metal ions play important structural, regulatory, and catalytic roles in all biological systems by serving as cofactors for proteins. Due to their relatively low levels in the cell compared to abundant metal ions such as potassium and magnesium, transition metals are often considered micronutrients and referred to as trace elements. Manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) are the most prevalent transition metals in the Lyme disease spirochete Borrelia burgdorferi. Here, we describe a method for the accurate measurement of these trace elements in B. burgdorferi utilizing inductively coupled plasma-sector field mass spectrometry (ICP-SFMS).

Key words

Borrelia burgdorferi Trace element analysis Transition metal ions Inductively coupled plasma-sector field mass spectrometry High resolution-inductively coupled plasma-mass spectrometry 

Notes

Acknowledgments

This work is supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under the award number AI103173. We thank Michael V. Norgard for providing the wild-type 297 and the bmtA mutant strains of B. burgdorferi.

References

  1. 1.
    Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10(2):87–99. doi: 10.1038/nrmicro2714 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57(4):521–525PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bolann BJ, Rahil-Khazen R, Henriksen H, Isrenn R, Ulvik RJ (2007) Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand J Clin Lab Invest 67(4):353–366. doi: 10.1080/00365510601095281 CrossRefPubMedGoogle Scholar
  4. 4.
    Jakubowski N, Prohaska T, Vanhaecke F, Roos PH, Lindemann T (2011) Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry. J Anal At Spectrom 26(4):727–757. doi: 10.1039/C0ja00007h CrossRefGoogle Scholar
  5. 5.
    Pollack RJ, Telford SR 3rd, Spielman A (1993) Standardization of medium for culturing Lyme disease spirochetes. J Clin Microbiol 31(5):1251–1255PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ouyang Z, He M, Oman T, Yang XF, Norgard MV (2009) A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A 106(9):3449–3454. doi: 10.1073/pnas.0812999106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang P, Lutton A, Olesik J, Vali H, Li X (2012) A novel iron- and copper-binding protein in the Lyme disease spirochaete. Mol Microbiol 86(6):1441–1451. doi: 10.1111/mmi.12068 CrossRefPubMedGoogle Scholar
  8. 8.
    Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47:253–259. doi: 10.1385/0-89603-310-4:253 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Xin Li
    • 1
  • Peng Wang
    • 1
  • Anthony Lutton
    • 2
  • John Olesik
    • 2
  1. 1.Division of Geographic Medicine and Infectious Diseases, Department of MedicineTufts Medical CenterBostonUSA
  2. 2.Trace Element Research LaboratoryThe Ohio State UniversityColumbusUSA

Personalised recommendations