Advertisement

Generation of Mammalian Host-Adapted Borrelia burgdorferi by Cultivation in Peritoneal Dialysis Membrane Chamber Implantation in Rats

  • Melissa J. Caimano
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)

Abstract

The transmission, survival, and virulence of Borrelia burgdorferi depend upon the spirochete’s ability to modulate its transcriptome as it cycles between its arthropod vector and reservoir host. This complex adaptive process is collectively referred to as “host-adaptation.” The paucibacillary nature of borrelial infections precludes the detailed analysis of host adaptation within infected mammalian tissues. To circumvent this limitation, we (J Clin Invest 101:2240–2250, 1998) developed a model system whereby spirochetes are cultivated within dialysis membrane chambers (DMCs) surgically implanted within the peritoneal cavity of a rat. Spirochetes within DMCs are exposed to many, if not all, of the environmental signals and physiological cues required for mammalian host adaptation but are protected from clearance by the host’s immune system.

Key words

Borrelia burgdorferi Lyme disease Spirochetes Host adaptation Gene expression Animal models 

Notes

Acknowledgments

The authors would like to thank Ms. Anna Allard for her superb technical assistance and Dr. Justin Radolf for his continued support of this work. This work is supported by NIH Grants AI029735 and AI 126146 and an American Heart Association Grant-in-Aid award.

Supplementary material

Supplemental Video 1

Generation of mammalian host-adapted Borrelia burgdorferi by cultivation in peritoneal dialysis membrane chamber implantation in rats. Subheading 3.2, Preparation of DMCs (MP4 25016 kb)

Supplemental Video 2

Generation of mammalian host-adapted Borrelia burgdorferi by cultivation in peritoneal dialysis membrane chamber implantation in rats. Subheading 3.3, Peritoneal implant procedure (MP4 313609 kb)

References

  1. 1.
    Akins DR, Bourell KW, Caimano MJ, Norgard MV, Radolf JD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101:2240–2250CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bacon RM, Kugeler KJ, Mead PS (2008) Surveillance for Lyme disease–United States, 1992–2006. MMWR Surveill Summ 57:1–9PubMedGoogle Scholar
  3. 3.
    Steere AC, Glickstein L (2004) Elucidation of Lyme arthritis. Nat Rev Immunol 4:143–152CrossRefPubMedGoogle Scholar
  4. 4.
    Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE (1983) The spirochetal etiology of Lyme disease. N Engl J Med 308:733–740CrossRefPubMedGoogle Scholar
  5. 5.
    Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99PubMedPubMedCentralGoogle Scholar
  6. 6.
    Iyer R, Caimano MJ, Luthra A, Axline D Jr, Corona A, Iacobas DA, Radolf JD, Schwartz I (2015) Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 95:509–538CrossRefPubMedGoogle Scholar
  7. 7.
    Pal U, Fikrig E (2010) Tick interactions. In: Samuels DS, Radolf JD (eds) Borrelia molecular biology, host intercations and pathogenesis. Caister Academic Press, Norfolk, UK, pp 279–298Google Scholar
  8. 8.
    Skare JT, Carroll JA, Yang XF, Samuels DS, Akins DR (2010) Gene regulation, transcriptomics, and proteomics. In: Samuels DS, Radolf JD (eds) Borrelia molecular biology, host interactions and pathogenesis. Calister Academic Press, Norfolk, UKGoogle Scholar
  9. 9.
    Groshong AM, Blevins JS (2014) Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. Adv Appl Microbiol 86:41–143CrossRefPubMedGoogle Scholar
  10. 10.
    Yang X, Goldberg MS, Popova TG, Schoeler GB, Wikel SK, Hagman KE, Norgard MV (2000) Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37:1470–1479CrossRefPubMedGoogle Scholar
  11. 11.
    Stevenson B, Schwan TG, Rosa PA (1995) Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ojaimi C, Brooks C, Casjens S, Rosa P, Elias A, Barbour A, Jasinskas A, Benach J, Katona L, Radolf J, Caimano M, Skare J, Swingle K, Akins D, Schwartz I (2003) Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun 71:1689–1705CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Revel AT, Talaat AM, Norgard MV (2002) DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci 99:1562–1567CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Samuels DS (2011) Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499. doi: 10.1146/annurev.micro.112408.134040 CrossRefPubMedGoogle Scholar
  15. 15.
    Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187:7845–7852CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65:1193–1217CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Purser JE, Lawrenz MB, Caimano MJ, Howell JK, Radolf JD, Norris SJ (2003) A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol 48:753–764CrossRefPubMedGoogle Scholar
  18. 18.
    Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA (2004) Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 72:5938–5946CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, Rosa PA, Coburn J (2012) The beta(3)-integrin ligand of Borrelia burgdorferi is critical for infection of mice but not ticks. Mol Microbiol 85:1105–1118CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins DR, Radolf JD, Schwan TG, Rosa P (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139–2150CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Colombo MJ, Abraham D, Shibuya A, Alugupalli KR (2011) B1b lymphocyte-derived antibodies control Borrelia hermsii independent of Fcalpha/mu receptor and in the absence of host cell contact. Immunol Res 51:249–256CrossRefPubMedGoogle Scholar
  22. 22.
    Caimano MJ, Sivasankaran SK, Allard A, Hurley D, Hokamp K, Grassmann AA, Hinton JC, Nally JE (2014) A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni. PLoS Pathog 10:e1004004CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grassmann AA, McBride AJ, Nally JE, Caimano MJ (2015) Generation of mammalian host-adapted Leptospira interrogans by cultivation in peritoneal dialysis membrane chamber implantation in rats. Bio Protoc 5:14CrossRefGoogle Scholar
  24. 24.
    Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525PubMedPubMedCentralGoogle Scholar
  25. 25.
    Pollack RJ, Telford SR, Spielman A (1993) Standardization of medium for culturing Lyme disease spirochetes. J Clin Microbiol 31:1251–1255PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang G, Iyer R, Bittker S, Cooper D, Small J, Wormser GP, Schwartz I (2004) Variations in Barbour-Stoenner-Kelly culture medium modulate infectivity and pathogenicity of Borrelia burgdorferi clinical isolates. Infect Immun 72:6702–6706CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang X, Popova TG, Goldberg MS, Norgard MV (2001) Influence of cultivation media on genetic regulatory patterns in Borrelia burgdorferi. Infect Immun 69:4159–4163CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of MedicineUConn HealthFarmingtonUSA
  2. 2.Department of PediatricsUConn HealthFarmingtonUSA
  3. 3.Department of Molecular Biology and BiophysicsUConn HealthFarmingtonUSA

Personalised recommendations