Recombinant E. coli Dualistic Role as an Antigen-adjuvant Delivery Vehicle for Oral Immunization

Part of the Methods in Molecular Biology book series (MIMB, volume 1690)


Escherichia coli is the mainstay tool for fundamental microbiology research due to its ease of cultivation and safety. Auxotrophic strains of the K-12 and B lineages of E. coli are the organisms of choice to produce recombinant proteins. Components present in the cell envelope of bacteria are also potent immune modulators and have been used to develop adjuvants. We used live E. coli, after induction of recombinant protein expression, to develop a vehicle which has a dualistic function of producing vaccine while presenting itself as the adjuvant to deliver oral vaccines against a number of infectious diseases, including Lyme disease. Here, we give an example using E. coli expressing B. burgdorferi Outer Surface Protein A, which was proven effective in reducing B. burgdorferi burden in infected ticks after a 5-year field trial of a baited formulation containing this reservoir targeted vaccine.

Key words

Escherichia coli Dualistic delivery vehicle Recombinant DNA Lyophilization Adjuvanted-antigen Reservoir targeted vaccine 



This work was supported by NIH grant R44 AI058364, R43 AI072810 and CDC grant UO1 CK000107 to MGS.


  1. 1.
    Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105. doi: 10.1016/0167-7799(96)80930-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130CrossRefPubMedGoogle Scholar
  3. 3.
    Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170(3):1245–1253CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506. doi: 10.1146/annurev.genet.30.1.465 CrossRefPubMedGoogle Scholar
  5. 5.
    Steen R, Dahlberg AE, Lade BN, Studier FW, Dunn JJ (1986) T7 RNA polymerase directed expression of the Escherichia coli rrnB operon. EMBO J 5(5):1099–1103PubMedPubMedCentralGoogle Scholar
  6. 6.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. doi: 10.3389/fmicb.2014.00172 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1(2):164–186. doi: 10.1002/biot.200500051 CrossRefPubMedGoogle Scholar
  8. 8.
    Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496. doi: 10.1111/j.0818-9641.2004.01272.x. PMID: 15479434CrossRefPubMedGoogle Scholar
  9. 9.
    Vogel FR, Powell MF (1995) A compendium of vaccine adjuvants and excipients. Pharm Biotechnol 6:141–228. PubMed PMID: 7551218CrossRefPubMedGoogle Scholar
  10. 10.
    Opie EL, Freund J (1937) An experimental study of protective inoculation with heat killed tubercle bacilli. J Exp Med 66(6):761–788CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Freund J, Casals J, Hosmer EP (1937) Sensitization and antibody formation after injection of tubercle bacili and parafin oil. Proc Soc Exp Biol Medical 37:509–513CrossRefGoogle Scholar
  12. 12.
    Stuart-Harris CH (1969) Adjuvant influenza vaccines. Bull World Health Organ 41(3):617–621PubMedGoogle Scholar
  13. 13.
    Johnson AG, Gaines S, Landy M (1956) Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 103(2):225–246CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ellouz FAA, Ciobaru R, Lederer E (1974) Minimal structural requirements for adjuvant activity of bacterial peptido glycan derivates. Biochem Biophys Res Commun. 59:1317–1325CrossRefPubMedGoogle Scholar
  15. 15.
    Ribi E (1984) Beneficial modification of the endotoxin molecule. J Biol Response Mod 3(1):1–9PubMedGoogle Scholar
  16. 16.
    Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM (1997) Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci U S A 94(20):10833–10837CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gomes-Solecki MJ, Brisson DR, Dattwyler RJ (2006) Oral vaccine that breaks the transmission cycle of the Lyme disease spirochete can be delivered via bait. Vaccine 24(20):4440–4449. doi: 10.1016/j.vaccine.2005.08.089. PubMed PMID: 16198456CrossRefPubMedGoogle Scholar
  18. 18.
    del Rio B, Dattwyler RJ, Aroso M, Neves V, Meirelles L, Seegers JF et al (2008) Oral immunization with recombinant lactobacillus plantarum induces a protective immune response in mice with Lyme disease. Clin Vaccine Immunol 15(9):1429–1435. doi: 10.1128/CVI.00169-08 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    del Rio B, Fuente JL, Neves V, Dattwyler R, Seegers JF, Gomes-Solecki M (2010) Platform technology to deliver prophylactic molecules orally: an example using the Class A select agent Yersinia pestis. Vaccine 28(41):6714–6722. doi: 10.1016/j.vaccine.2010.07.084 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    del Rio B, Seegers JF, Gomes-Solecki M (2010) Immune response to Lactobacillus plantarum expressing Borrelia burgdorferi OspA is modulated by the lipid modification of the antigen. PLoS One 5(6):e11199. doi: 10.1371/journal.pone.0011199 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Meirelles Richer L, Aroso M, Contente-Cuomo T, Ivanova L, Gomes-Solecki M (2011) Reservoir targeted vaccine for lyme borreliosis induces a yearlong, neutralizing antibody response to OspA in white-footed mice. Clin Vaccine Immunol 18(11):1809–1816. doi: 10.1128/CVI.05226-11 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lourdault K, Wang LC, Vieira A, Matsunaga J, Melo R, Lewis MS et al (2014) Oral immunization with Escherichia coli expressing a lipidated form of LigA protects hamsters against challenge with Leptospira interrogans serovar Copenhageni. Infect Immun 82(2):893–902. doi: 10.1128/IAI.01533-13 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Richer LM, Brisson D, Melo R, Ostfeld RS, Zeidner N, Gomes-Solecki M (2014) Reservoir targeted vaccine against Borrelia burgdorferi: a new strategy to prevent Lyme disease transmission. J Infect Dis 209(12):1972–1980. doi: 10.1093/infdis/jiu005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gomes-Solecki M (2014) Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi. Front Cell Infect Microbiol 4:136. doi: 10.3389/fcimb.2014.00136 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Melo R, Richer L, Johnson DL, Gomes-Solecki M (2016) Oral immunization with OspC does not prevent tick-borne borrelia burgdorferi infection. PLoS One 11(3):e0151850. doi: 10.1371/journal.pone.0151850 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh P, Verma D, Backstedt BT, Kaur S, Kumar M, Smith AA et al (2017) Borrelia burgdorferi BBI39 paralogs are targets of protective immunity inducing microbicidal responses and reducing pathogen persistence either in hosts or in the vector. J Infect Dis. doi: 10.1093/infdis/jix036

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Microbiology Immunology and BiochemistryUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Immuno Technologies, Inc.MemphisUSA
  3. 3.US BIOLOGICMemphisUSA

Personalised recommendations