Two Photon Intravital Microscopy of Lyme Borrelia in Mice

  • Alexia A. Belperron
  • Jialing Mao
  • Linda K. Bockenstedt
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)


Two-photon intravital microscopy is a powerful tool that allows visualization of cells in intact tissues in a live animal in real time. In recent years, this advanced technology has been applied to understand pathogen-host interactions using fluorescently labeled bacteria. In particular, infectious fluorescent transformants of the Lyme disease spirochete Borrelia burgdorferi, an Ixodes tick-transmitted pathogen, have been imaged by two-photon intravital microscopy to study bacterial motility and interactions of the pathogen with feeding ticks and host tissues. Here, we describe the techniques and equipment used to image mammalian-adapted spirochetes in the skin of living mice in vivo and in joints ex vivo using two-photon intravital microscopy.

Key words

Two photon Intravital Microscopy Borrelia burgdorferi Lyme Borreliosis 


  1. 1.
    CDC (2006) Reported Lyme disease cases by state, 1993–2005. Accessed 30 Jul 2016
  2. 2.
    de Silva AM, Fikrig E (1995) Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53:397–404CrossRefPubMedGoogle Scholar
  3. 3.
    Fikrig E, Feng W, Barthold SW, Telford SR 3rd, Flavell RA (2000) Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J Immunol 164(10):5344–5351CrossRefPubMedGoogle Scholar
  4. 4.
    Hodzic E, Feng S, Freet KJ, Borjesson DL, Barthold SW (2002) Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface. Infect Immun 70(7):3382–3388CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pal U, de Silva AM, Montgomery RR, Fish D, Anguita J, Anderson JF, Lobet Y, Fikrig E (2000) Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein a. J Clin Invest 106(4):561–569CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Piesman J, Gern L (2004) Lyme borreliosis in Europe and North America. Parasitology 129(Suppl):S191–S220CrossRefPubMedGoogle Scholar
  7. 7.
    Masedunskas A, Milberg O, Porat-Shliom N, Sramkova M, Wigand T, Amornphimoltham P, Weigert R (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2(5):143–157. doi: 10.4161/bioa.21758 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Denk W (1996) Two-photon excitation in functional biological imaging. J Biomed Optics 1(3):296–304. doi: 10.1117/12.242945 CrossRefGoogle Scholar
  9. 9.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76CrossRefPubMedGoogle Scholar
  10. 10.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi: 10.1038/nmeth818 CrossRefPubMedGoogle Scholar
  11. 11.
    Peti-Peterdi J, Bell PD (2003) Confocal and two-photon microscopy. Methods Mol Med 86:129–138. doi: 10.1385/1-59259-392-5:129 PubMedGoogle Scholar
  12. 12.
    Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vision 23(12):3139–3149CrossRefGoogle Scholar
  13. 13.
    Vanzetta I, Deneux T, Kasz s A, Katona G, Rozsa B (2012) Functional imaging using two-photon microscopy in living tissue. In: Visualization Techniques, vol 70. Neuromethods. pp 129–164Google Scholar
  14. 14.
    Bockenstedt LK, Gonzalez DG, Haberman AM, Belperron AA (2012) Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 122(7):2652–2660. doi: 10.1172/JCI58813 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumar D, Ristow LC, Shi M, Mukherjee P, Caine JA, Lee WY, Kubes P, Coburn J, Chaconas G (2015) Intravital imaging of vascular transmigration by the Lyme spirochete: requirement for the integrin binding residues of the B. burgdorferi P66 protein. PLoS Pathog 11(12):e1005333. doi: 10.1371/journal.ppat.1005333 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miller JC, von Lackum K, Woodman ME, Stevenson B (2006) Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog 41(1):43–47. doi: 10.1016/j.micpath.2006.04.004 CrossRefPubMedGoogle Scholar
  17. 17.
    Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4(6):e1000090. doi: 10.1371/journal.ppat.1000090 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Whetstine CR, Slusser JG, Zuckert WR (2009) Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi. Appl Environ Microbiol 75(20):6553–6558. doi: 10.1128/AEM.02825-08 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119(12):3652–3665CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pineda CM, Park S, Mesa KR, Wolfel M, Gonzalez DG, Haberman AM, Rompolas P, Greco V (2015) Intravital imaging of hair follicle regeneration in the mouse. Nat Protoc 10(7):1116–1130. doi: 10.1038/nprot.2015.070 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bockenstedt LK, Gonzalez D, Mao J, Li M, Belperron AA, Haberman A (2014) What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the Lyme disease spirochete. Yale J Biol Med 87(1):3–13PubMedPubMedCentralGoogle Scholar
  22. 22.
    So P, Kim H, Kochevar I (1998) Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt Express 3(9):339–350CrossRefPubMedGoogle Scholar
  23. 23.
    Stewart PE, Rosa PA (2008) Transposon mutagenesis of the Lyme disease agent Borrelia burgdorferi. Methods Mol Biol 431:85–95PubMedGoogle Scholar
  24. 24.
    Cox G, Kable E (2006) Second-harmonic imaging of collagen. Methods Mol Biol 319:15–35. doi: 10.1007/978-1-59259-993-6_2 CrossRefPubMedGoogle Scholar
  25. 25.
    Coburn J, Leong J, Chaconas G (2013) Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 21(8):372–379. doi: 10.1016/j.tim.2013.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Novak EA, Sekar P, Xu H, Moon KH, Manne A, Wooten RM, Motaleb MA (2016) The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell Microbol 18(12):1782–1799. doi: 10.1111/cmi.12617 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Alexia A. Belperron
    • 1
  • Jialing Mao
    • 1
  • Linda K. Bockenstedt
    • 1
  1. 1.Department of Internal Medicine/Section of RheumatologyYale University School of MedicineNew HavenUSA

Personalised recommendations