Analysis of Borrelia burgdorferi Proteome and Protein–Protein Interactions

  • Xiuli Yang
  • Meghna Thakur
  • Juraj Koci
  • Alexis A. Smith
  • Preeti Singh
  • Xuran Zhuang
  • Kamoltip Promnares
  • Yan Wang
  • Ozlem Buyuktanir
  • Utpal Pal
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)

Abstract

The proteome of Borrelia burgdorferi undergoes dynamic alterations as the microbe cycles through and persists in diverse host or vector environments. Therefore, studies of B. burgdorferi proteome and protein–protein interactions, which play central roles in biological processes in diverse organisms, are critical in understanding biology and infectivity of spirochetes. Here, we describe the proteomic analysis of B. burgdorferi by two-dimensional (2-D) gel electrophoresis followed by protein identification via liquid chromatography-mass spectrometry and database searching. We also describe assays for studying the interaction between borrelial proteins: a novel high-throughput luciferase assay, yeast two-hybrid assay, and a far-Western assay that are routinely used in our laboratories.

Key words

Proteomics analysis Two-dimensional (2-D) gel electrophoresis Mass spectrometry Protein–protein interaction Borrelia burgdorferi Luciferase assay Yeast two-hybrid Far-Western 

Notes

Acknowledgment

We sincerely thank our collaborators and past and present members of our laboratory, especially Manish Kumar, Adam Coleman, Toru Kariu, Quentin Bernard, Brian Backstedt, and Kavita Sharma for their assistance with developing the protocols presented in this chapter. This work was supported by funding from University of Maryland, College Park as well as grants from the National Institute of Allergy and Infectious Diseases, Award Numbers AI080615, AI106059, and AI116620 to UP.

References

  1. 1.
    Mead PS (2015) Epidemiology of Lyme disease. Infect Dis Clin N Am 29:187–210. doi: 10.1016/j.idc.2015.02.010 CrossRefGoogle Scholar
  2. 2.
    Piesman J, Gern L (2004) Lyme borreliosis in Europe and North America. Parasitology 129(Suppl):S191–S220CrossRefPubMedGoogle Scholar
  3. 3.
    de Silva AM, Fikrig E (1997) Arthropod- and host-specific gene expression by Borrelia burgdorferi. J Clin Invest 99:377–379CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pal U, Fikrig E (2003) Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect 5:659–666CrossRefPubMedGoogle Scholar
  5. 5.
    Pal U, Fikrig E (2010) Tick interactions. In: Samuels DS, Radolf JD (eds) Borrelia, molecular biology, Host Interaction and Pathogenesis. Caister Academic Press, Norfolk, UK, pp 279–298Google Scholar
  6. 6.
    Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes (in eng). Nat Rev Microbiol 10:87–89. doi:nrmicro2714 [pii]. doi: 10.1038/nrmicro2714 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U (2011) Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 10:4556–4566. doi: 10.1021/pr200395b CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Norris SJ (2006) The dynamic proteome of Lyme disease Borrelia. Genome Biol 7:209CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294CrossRefPubMedGoogle Scholar
  10. 10.
    O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedPubMedCentralGoogle Scholar
  11. 11.
    Clauser KR, Hall SC, Smith DM, Webb JW, Andrews LE, Tran HM, Epstein LB, Burlingame AL (1995) Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE. Proc Natl Acad Sci U S A 92:5072–5076CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baldwin MA (2004) Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics 3:1–9. doi: 10.1074/mcp.R300012-MCP200 CrossRefPubMedGoogle Scholar
  13. 13.
    Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. doi: 10.1038/nrg.2016.49 CrossRefPubMedGoogle Scholar
  14. 14.
    Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R et al (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586CrossRefPubMedGoogle Scholar
  15. 15.
    Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516CrossRefPubMedGoogle Scholar
  16. 16.
    Casjens SR, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, Fraser-Liggett CM, Schutzer SE (2011) Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates (in eng). J Bacteriol 193:6995–6996. doi:193/24/6995 [pii]. doi: 10.1128/JB.05951-11 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF, Luft BJ (2011) Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193:1018–1020. doi:JB.01158-10 [pii]. doi: 10.1128/JB.01158-10 CrossRefPubMedGoogle Scholar
  18. 18.
    Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15:533–550. doi: 10.1038/nrd.2016.29 CrossRefPubMedGoogle Scholar
  19. 19.
    Kariu T, Sharma K, Singh P, Smith AA, Backstedt B, Buyuktanir O, Pal U (2015) BB0323 and novel virulence determinant BB0238: Borrelia burgdorferi proteins that interact with and stabilize each other and are critical for infectivity. J Infect Dis 211:462–471. doi: 10.1093/infdis/jiu460 CrossRefPubMedGoogle Scholar
  20. 20.
    Kariu T, Yang X, Marks CB, Zhang X, Pal U (2013) Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 88:510–522. doi: 10.1111/mmi.12202 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468. doi: 10.1016/j.cell.2004.10.027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Xiuli Yang
    • 1
  • Meghna Thakur
    • 1
  • Juraj Koci
    • 1
  • Alexis A. Smith
    • 1
  • Preeti Singh
    • 1
  • Xuran Zhuang
    • 1
  • Kamoltip Promnares
    • 1
  • Yan Wang
    • 2
  • Ozlem Buyuktanir
    • 3
  • Utpal Pal
    • 1
    • 4
  1. 1.Department of Veterinary MedicineUniversity of MarylandCollege ParkUSA
  2. 2.Proteomics Core Facility, College of Computer, Mathematical, and Natural SciencesUniversity of MarylandCollege ParkUSA
  3. 3.Department of Microbiology, Faculty of Veterinary MedicineOndokuz Mayis UniversitySamsunTurkey
  4. 4.Virginia-Maryland Regional College of Veterinary MedicineCollege ParkUSA

Personalised recommendations