Advertisement

Genome-Wide Mutagenesis in Borrelia burgdorferi

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)

Abstract

Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex®Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex®Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5′-TA-3′ sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host–pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.

Key words

Lyme disease Borrelia burgdorferi Signature-tagged mutagenesis (STM) Luminex® FLEXMAP™ technology Next-generation sequencing Microbial pathogenesis Host–pathogen interactions Bacterial physiology Mouse and tick infection models 

Notes

Acknowledgement

We thank Drs. P.E. Stewart and P.A. Rosa (Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MN) for providing the plasmid pGKT. Studies described in this article were supported by the United States National Institutes of Health, Institute of Allergy and Infectious Diseases through grants R01 AI059048 (Steven J. Norris and Tao Lin).

References

  1. 1.
    Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3:129–143CrossRefPubMedGoogle Scholar
  2. 2.
    Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99PubMedPubMedCentralGoogle Scholar
  3. 3.
    Brown JS, Aufauvre-Brown A, Brown J, Jennings JM, Arst H, Holden DW (2000) Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 36:1371–1380CrossRefPubMedGoogle Scholar
  4. 4.
    Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403CrossRefPubMedGoogle Scholar
  5. 5.
    Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93:2593–2597CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chiang SL, Mekalanos JJ, Holden DW (1999) In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154CrossRefPubMedGoogle Scholar
  7. 7.
    Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ (2012) Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7:e47532CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lin T, Gao L, Edmondson DG, Jacobs MB, Philipp MT, Norris SJ (2009) Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLoS Pathog 5:e1000679CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Troy EB, Lin T, Gao L, Lazinski DW, Camilli A, Norris SJ, Hu LT (2013) Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 81:2347–2357CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lin T, Troy EB, Hu LT, Gao L, Norris SJ (2014) Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 4:63CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin T, Gao L, Zhao X, Liu J, Norris SJ (2015) Mutations in the Borrelia burgdorferi flagellar type III secretion system genes fliH and fliI profoundly affect spirochete flagellar assembly, morphology, motility, structure, and cell division. mBio 6:e00579–e00515PubMedPubMedCentralGoogle Scholar
  12. 12.
    Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, Hu LT (2016) Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol Microbiol 101:1003–1023CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kawabata H, Norris SJ, Watanabe H (2004) BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72:7147–7154CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stewart PE, Rosa PA (2008) Transposon mutagenesis of the Lyme disease agent Borrelia burgdorferi. Methods Mol Biol 431:85–95PubMedGoogle Scholar
  15. 15.
    Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A 96:11428–11433CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lehoux DE, Sanschagrin F, Levesque RC (1999) Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. BioTechniques 26(473–478):480Google Scholar
  17. 17.
    Hunt TA, Kooi C, Sokol PA, Valvano MA (2004) Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 72:4010–4022CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47:253–259PubMedGoogle Scholar
  19. 19.
    Stewart PE, Hoff J, Fischer E, Krum JG, Rosa PA (2004) Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol 70:5973–5979CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586CrossRefPubMedGoogle Scholar
  21. 21.
    Norris SJ, Howell JK, Odeh EA, Lin T, Gao L, Edmondson DG (2011) High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology. Appl Environ Microbiol 77:1483–1492CrossRefPubMedGoogle Scholar
  22. 22.
    Escalante A, Salinas Cervantes A, Gosset G, Bolivar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94:1483–1494CrossRefPubMedGoogle Scholar
  23. 23.
    Kasumba IN, Bestor A, Tilly K, Rosa PA (2015) Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi. Appl Environ Microbiol 81:1038–1046CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63:694–710PubMedGoogle Scholar
  25. 25.
    Gautam A, Hathaway M, McClain N, Ramesh G, Ramamoorthy R (2008) Analysis of the determinants of bba64 (P35) gene expression in Borrelia burgdorferi using a gfp reporter. Microbiology 154:275–285CrossRefPubMedGoogle Scholar
  26. 26.
    Stevenson B, Babb K (2002) LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70:4099–4105CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hübner A, Revel AT, Nolen DM, Hagman KE, Norgard MV (2003) Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71:2892–2896CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stevenson B, von Lackum K, Wattier RL, McAlister JD, Miller JC, Babb K (2003) Quorum sensing by the Lyme disease spirochete. Microbes Infect 5:991–997CrossRefPubMedGoogle Scholar
  29. 29.
    Blevins JS, Revel AT, Caimano MJ, Yang XF, Richardson JA, Hagman KE, Norgard MV (2004) The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72:4864–4867CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller JC, Stevenson B (2004) Increased expression of Borrelia burgdorferi factor H-binding surface proteins during transmission from ticks to mice. Int J Med Microbiol 293(Suppl 37):120–125PubMedGoogle Scholar
  31. 31.
    Babb K, von Lackum K, Wattier RL, Riley SP, Stevenson B (2005) Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187:3079–3087CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    von Lackum K, Babb K, Riley SP, Wattier RL, Bykowski T, Stevenson B (2006) Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2 and lacks a complete activated-methyl cycle. Int J Med Microbiol 296(Suppl 40):92–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineMcGovern Medical School, University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations