Skip to main content

Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

MNase-seq allows the genome-wide examination of the nucleosome landscape by determination of nucleosome positioning and occupancy. Typically, native or formaldehyde fixed chromatin is subjected to digestion by micrococcal nuclease (MNase), which degrades linker DNA and yields mainly mono-nucleosomes. The resulting material can be processed directly or can be subjected to an optional chromatin immunoprecipitation step (MNase-ChIP-seq). De-crosslinked and purified DNA is then subjected to next-generation sequencing. The protocol presented here has been tailored for the analysis of nucleosome landscape in the malaria parasite, Plasmodium falciparum, but most steps are directly applicable to other cell types. We also discuss general considerations for experimental design and computational analysis, which are crucial for accurate investigation of the nucleosome landscape.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lieleg C, Krietenstein N, Walker M, Korber P (2015) Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 124:131–151

    Article  CAS  PubMed  Google Scholar 

  2. Hughes AL, Rando OJ (2014) Mechanisms underlying nucleosome positioning in vivo. Annu Rev Biophys 43:41–63

    Article  CAS  PubMed  Google Scholar 

  3. Clark RJ, Felsenfeld G (1971) Structure of chromatin. Nat New Biol 229:101–106

    Article  CAS  PubMed  Google Scholar 

  4. Heins JN, Suriano JR, Taniuchi H, Anfinsen CB (1967) Characterization of a nuclease produced by Staphylococcus aureus. J Biol Chem 242:1016–1020

    CAS  PubMed  Google Scholar 

  5. Cui K, Zhao K (2012) Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq. Methods Mol Biol 833:413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Platt JL, Kent NA, Harwood AJ, Kimmel AR (2013) Analysis of chromatin organization by deep sequencing technologies. Methods Mol Biol 983:173–183

    Article  CAS  PubMed  Google Scholar 

  7. Ishii H, Kadonaga JT, Ren B (2015) MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc Natl Acad Sci U S A 112:E3457–E3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rhee HS, Bataille AR, Zhang L, Pugh BF (2014) Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159:1377–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brogaard K, Xi L, Wang JP, Widom J (2012) A map of nucleosome positions in yeast at base-pair resolution. Nature 486:496–501

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Allan J, Fraser RM, Owen-Hughes T, Keszenman-Pereyra D (2012) Micrococcal nuclease does not substantially bias nucleosome mapping. J Mol Biol 417:152–164

    Article  CAS  PubMed  Google Scholar 

  11. Kensche PR, Hoeijmakers WA, Toenhake CG, Bras M, Chappell L, Berriman M, Bartfai R (2016) The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res 44:2110–2124

    Article  CAS  PubMed  Google Scholar 

  12. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  CAS  PubMed  Google Scholar 

  13. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 7:11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rizzo JM, Bard JE, Buck MJ (2012) Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol Biol 13:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9:2643–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan N, Hughes TR, Lieb JD, Widom J, Segal E (2010) Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biol 11:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikitina T, Wang D, Gomberg M, Grigoryev SA, Zhurkin VB (2013) Combined micrococcal nuclease and exonuclease III digestion reveals precise positions of the nucleosome core/linker junctions: implications for high-resolution nucleosome mapping. J Mol Biol 425:1946–1960

    Article  CAS  PubMed  Google Scholar 

  18. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, Turner DJ, Macinnis B, Kwiatkowski DP, Swerdlow HP, Quail MA (2012) Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics 13:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoeijmakers WA, Bartfai R, Francoijs KJ, Stunnenberg HG (2010) Linear amplification for deep sequencing. Nat Protoc 6:1026–1036

    Article  Google Scholar 

  21. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2012) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9:72–74

    Article  CAS  Google Scholar 

  22. Quintales L, Vazquez E, Antequera F (2014) Comparative analysis of methods for genome-wide nucleosome cartography. Brief Bioinform 16:576–587

    Article  PubMed  Google Scholar 

  23. Teif VB (2015) Nucleosome positioning: resources and tools online. Brief Bioinform 17:745–757

    Article  PubMed  Google Scholar 

  24. Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S (2011) Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 108:18318–18323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoeijmakers WA, Bartfai R, Francoijs KJ, Stunnenberg HG (2011) Linear amplification for deep sequencing. Nat Protoc 6:1026–1036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to this protocol has received funding from The Netherlands Organization for Scientific Research (NWO-Vidi 864.11.007 to R.B.) and The National Institutes of Health (EuPathDB-Driving Biological Project subaward # 553539 to R.B.). We would like to acknowledge Dr. Kensche for valuable input and discussions concerning data analysis and Christa Toenhake for proofreading of the manuscript. Furthermore, we would like to thank our colleagues at the Department of Molecular Biology, the Department of Molecular Developmental Biology, and the Department of Medical Microbiology of Radboud University and St. Radboud UMC for support and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wieteke Anna Maria Hoeijmakers or Richárd Bártfai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hoeijmakers, W.A.M., Bártfai, R. (2018). Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq). In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics