Chromatin RNA Immunoprecipitation (ChRIP)

  • Tanmoy Mondal
  • Santhilal Subhash
  • Chandrasekhar Kanduri
Part of the Methods in Molecular Biology book series (MIMB, volume 1689)


Researchers have recently had a growing interest in understanding the functional role of long noncoding RNAs (lncRNAs) in chromatin organization. Accumulated evidence suggests lncRNAs could act as interphase molecules between chromatin and chromatin remodelers to define the epigenetic code. However, it is not clear how lncRNAs target chromatin remodelers to specific chromosomal regions in order to establish a functionally distinct epigenetic state of chromatin. We developed and optimized chromatin RNA immunoprecipitation (ChRIP) technology to characterize the lncRNAs associated with active and inactive chromatin compartments. Use of ChRIP to identify chromatin-bound lncRNA will further improve our knowledge regarding the functional role of lncRNAs in establishing epigenetic modifications of chromatin.

Key words

Long noncoding RNA Chromatin EZH2 H3K27me3 Gene regulation Epigenetics Inactive chromatin Active chromatin 



This work was supported by the grants from the Knut and Alice Wallenberg Foundation (KAW) (Dnr KAW 2014.0057), Swedish Foundation for Strategic Research (RB13-0204), Swedish Cancer Research Foundation (Cancerfonden: Kontrakt no. 150796), the Swedish Research Council (VR-M: K2014-67X-20781-07-4), Barncancerfonden (PR2014/0147), Ingabritt och Arne Lundbergs forskningsstiftelse and LUA/ALF to C.K.


  1. 1.
    Mohammad F, Pandey GK, Mondal T et al (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139(15):2792–2803CrossRefPubMedGoogle Scholar
  2. 2.
    Pandey RR, Mondal T et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246CrossRefPubMedGoogle Scholar
  3. 3.
    Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mondal T, Rasmussen M, Pandey GK et al (2010) Characterization of the RNA content of chromatin. Genome Res 20(7):899–907CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harrow J, Frankish A, Gonzalez JM et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43(Database issue):D662–D669CrossRefPubMedGoogle Scholar
  10. 10.
    Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169CrossRefPubMedGoogle Scholar
  11. 11.
    Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930CrossRefPubMedGoogle Scholar
  12. 12.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefPubMedGoogle Scholar
  13. 13.
    Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8(9):1765–1786CrossRefPubMedGoogle Scholar
  14. 14.
    Genomes Project Consortium, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65CrossRefGoogle Scholar
  15. 15.
    Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12(8):R79CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Tanmoy Mondal
    • 1
  • Santhilal Subhash
    • 1
  • Chandrasekhar Kanduri
    • 1
  1. 1.Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, The Sahlgrenska Academy, University of GothenburgGothenburgSweden

Personalised recommendations