Skip to main content

ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance

  • Protocol
  • First Online:
Chromatin Immunoprecipitation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Protein–DNA interactions in vivo can be detected and quantified by chromatin immunoprecipitation (ChIP). ChIP has been instrumental for the advancement of epigenetics and has set the groundwork for the development of a number of ChIP-related techniques that have provided valuable information about the organization and function of genomes. Here, we provide an introduction to ChIP and discuss the applications of ChIP in different research areas. We also review some of the strategies that have been devised to improve ChIP performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torres-Martinez S, Ruiz-Carrillo A (1982) Nucleosomes containing histones H1 or H5 are closely interspersed in chromatin. Nucleic Acids Res 10:2323–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilmour DS, Lis J (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  PubMed  Google Scholar 

  5. Paul J, Duerksen JD (1975) Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem 9:9–16

    Article  CAS  PubMed  Google Scholar 

  6. Kotovic KM, Lockshon D, Boric L, Neugebauer KM (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23:5768–5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morlando M, Ballarino M, Gromak N et al (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15:902–909

    Article  CAS  PubMed  Google Scholar 

  8. Hessle V, Björk P, Sokolowski M et al (2009) The exosome associates cotranscriptionally with the nascent pre-mRNP through interactions with heterogeneous nuclear ribonucleoproteins. Mol Biol Cell 20:3459–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Listerman I, Sapra AK, Neugebauer KM (2006) Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13:815–822

    Article  CAS  PubMed  Google Scholar 

  10. Rill R, Van Holde KE (1973) Properties of nuclease-resistant fragments of calf thymus chromatin. J Biol Chem 248:1080–1083

    CAS  PubMed  Google Scholar 

  11. Axel R, Cedar H, Felsenfield G (1975) The structure of the globin genes in chromatin. Biochemistry 14:2489–2495

    Article  CAS  PubMed  Google Scholar 

  12. Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly space sites by a nuclear deoxyri-bonuclease. Biochem Biophys Res Commun 52:504–510

    Article  CAS  PubMed  Google Scholar 

  13. Zaret K (2005) Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol 21:1. doi:10.1002/0471142727.mb2101s69

    PubMed  Google Scholar 

  14. Legube G, McWeeney SK, Lercher MJ, Akhtar A (2006) X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev 20:871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stewart D, Tomita A, Shi YB, Wong J (2006) Chromatin immunoprecipitation for studying transcriptional regulation in Xenopus oocytes and tadpoles. Methods Mol Biol 322:165–181

    Article  CAS  PubMed  Google Scholar 

  16. Dahl JA, Collas P (2009) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032–1045

    Article  Google Scholar 

  17. Gilfillan GD, Hughes T, Sheng Y et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645. doi:10.1186/1471-2164-13-645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rotem A, Ram O, Shoresh N et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33:1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chabbert CD, Adjalley SH, Klaus B et al (2015) A high-throughput ChIP-Seq for large-scale chromatin studies. Mol Syst Biol 11:777. doi:10.15252/msb.20145776

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bonhoure N, Bounova G, Bernasconi D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orlando DA, Chen MW, Brown VE et al (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170

    Article  CAS  PubMed  Google Scholar 

  22. Eberle AB, Böhm S, Östlund Farrants AK et al (2012) The use of a synthetic DNA-antibody complex as external reference for chromatin immunoprecipitation. Anal Biochem 426:147–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financed by grants from The Swedish Research Council and The Swedish Cancer Society to N.V. A.J.P. was supported by the Department of Molecular Biosciences, The Wenner-Gren Institute at the Stockholm University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Visa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Visa, N., Jordán-Pla, A. (2018). ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics