Advertisement

Cell Cycle Analysis by Mass Cytometry

  • Gregory K. BehbehaniEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1686)

Abstract

The regulated progression of cells through the cell cycle during proliferation is a critical factor in tumor progression, anti-neoplastic therapy response, immune system regulation, and developmental biology. While flow cytometric measurement of cell cycle progression is well established, mass cytometry assays allow the cell cycle to be measured along with up to 39 other antigens enabling characterization of the complex interactions between the cell cycle and a wide variety of cellular processes. This method describes the use of mass cytometry for the analysis of cell cycle state for cells from three different sources: in vitro cultured cell lines, ex vivo human blood or bone marrow, and in vivo labeling and ex vivo analysis of murine tissues. The method utilizes incorporation of 5-Iodo-2′-deoxyuridine (IdU), combined with measurement of phosphorylated retinoblastoma protein (pRb), cyclin B1, and phosphorylated histone H3 (p-HH3). These measurements can be integrated into a gating strategy that allows for clear separation of all five phases of the cell cycle.

Key words

Cell cycle Mass cytometry CyTOF Iodo-deoxyuridine Cyclin Retinoblastoma protein Phosphorylated histone H3 Ki-67 

References

  1. 1.
    Darzynkiewicz Z, Juan G, Srour EF (2004) Differential staining of DNA and RNA. Curr Protoc Cytom Chapter 7(Unit 7):3. doi: 10.1002/0471142956.cy0703s30 PubMedGoogle Scholar
  2. 2.
    Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311. doi: 10.1385/1-59259-811-0:301 PubMedGoogle Scholar
  3. 3.
    Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC (2013) An introduction to mass cytometry: fundamentals and applications. Cancer Immun, Immunother 62(5):955–965. doi: 10.1007/s00262-013-1416-8 CrossRefGoogle Scholar
  4. 4.
    Ornatsky OI, Lou X, Nitz M, Schafer S, Sheldrick WS, Baranov VI, Bandura DR, Tanner SD (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80(7):2539–2547. doi: 10.1021/ac702128m CrossRefPubMedGoogle Scholar
  5. 5.
    Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81(7):552–566. doi: 10.1002/cyto.a.22075 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Raval A, Behbehani GK, Nguyen le XT, Thomas D, Kusler B, Garbuzov A, Ramunas J, Holbrook C, Park CY, Blau H, Nolan GP, Artandi SE, Mitchell BS (2015) Reversibility of defective Hematopoiesis caused by telomere shortening in telomerase knockout mice. PLoS One 10(7):e0131722. doi: 10.1371/journal.pone.0131722 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Behbehani GK, Samusik N, Bjornson ZB, Fantl WJ, Medeiros BC, Nolan GP (2015) Mass cytometric functional profiling of acute myeloid Leukemia defines cell-cycle and Immunophenotypic properties that correlate with known responses to therapy. Cancer Discov 5(9):988–1003. doi: 10.1158/2159-8290.cd-15-0298 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA (2015) Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 7(297):297ra115. doi: 10.1126/scitranslmed.aac5722 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chang Q, Ornatsky OI, Koch CJ, Chaudary N, Marie-Egyptienne DT, Hill RP, Tanner SD, Hedley DW (2015) Single-cell measurement of the uptake, intratumoral distribution and cell cycle effects of cisplatin using mass cytometry. Int J Cancer 136(5):1202–1209. doi: 10.1002/ijc.29074 CrossRefPubMedGoogle Scholar
  10. 10.
    Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55(2):61–70. doi: 10.1002/cyto.a.10072 CrossRefPubMedGoogle Scholar
  11. 11.
    Darzynkiewicz Z, Gong J, Juan G, Ardelt B, Traganos F (1996) Cytometry of cyclin proteins. Cytometry 25(1):1–13. doi: 10.1002/(sici)1097-0320(19960901)25:1<1::aid-cyto1>3.0.co;2-n CrossRefPubMedGoogle Scholar
  12. 12.
    Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81(6):467–475. doi: 10.1002/cyto.a.22067 CrossRefPubMedGoogle Scholar
  13. 13.
    Chow S, Hedley D, Grom P, Magari R, Jacobberger JW, Shankey TV (2005) Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67(1):4–17. doi: 10.1002/cyto.a.20167 CrossRefPubMedGoogle Scholar
  14. 14.
    Behbehani GK, Thom C, Zunder ER, Finck R, Gaudilliere B, Fragiadakis GK, Fantl WJ, Nolan GP (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 85(12):1011–1019. doi: 10.1002/cyto.a.22573 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zunder ER, Finck R, Behbehani GK, Amir E-aD, Krishnaswamy S, Gonzalez VD, Lorang CG, Bjornson Z, Spitzer MH, Bodenmiller B, Fantl WJ, Pe'er D, Nolan GP (2015) Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Prot 10(2):316–333. doi: 10.1038/nprot.2015.020. http://www.nature.com/nprot/journal/v10/n2/abs/nprot.2015.020.html-supplementary-information CrossRefGoogle Scholar
  16. 16.
    Ren S, Rollins BJ (2004) Cyclin C/Cdk3 promotes Rb-dependent G0 exit. Cell 117(2):239–251. doi: 10.1016/s0092-8674(04)00300-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Goto H, Yasui Y, Nigg EA, Inagaki M (2002) Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7(1):11–17. doi: 10.1046/j.1356-9597.2001.00498.x CrossRefPubMedGoogle Scholar
  18. 18.
    Hirata A, Inada K, Tsukamoto T, Sakai H, Mizoshita T, Yanai T, Masegi T, Goto H, Inagaki M, Tatematsu M (2004) Characterization of a monoclonal antibody, HTA28, recognizing a histone H3 phosphorylation site as a useful marker of M-phase cells. J Histochem Cytochem 52(11):1503–1509. doi: 10.1369/jhc.4A6285.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. http://www.nature.com/nbt/journal/v29/n10/abs/nbt.1991.html-supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552. doi: 10.1038/nbt.2594 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Division of HematologyOhio State University and James Cancer HospitalColumbusUSA

Personalised recommendations