Skip to main content

A Computational Library Design Protocol for Rapid Improvement of Protein Stability: FRESCO

  • Protocol
  • First Online:
Protein Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

The ability to stabilize enzymes and other proteins has wide-ranging applications. Most protocols for enhancing enzyme stability require multiple rounds of high-throughput screening of mutant libraries and provide only modest improvements of stability. Here, we describe a computational library design protocol that can increase enzyme stability by 20–35 °C with little experimental screening, typically fewer than 200 variants. This protocol, termed FRESCO, scans the entire protein structure to identify stabilizing disulfide bonds and point mutations, explores their effect by molecular dynamics simulations, and provides mutant libraries with variants that have a good chance (>10%) to exhibit enhanced stability. After experimental verification, the most effective mutations are combined to produce highly robust enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596–604

    Article  CAS  PubMed  Google Scholar 

  2. Wijma HJ, Floor RJ, Janssen DB (2013) Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23:588–594

    Article  CAS  PubMed  Google Scholar 

  3. Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565

    Article  CAS  PubMed  Google Scholar 

  4. Eijsink V, Bjork A, Gaseidnes S et al (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  CAS  PubMed  Google Scholar 

  5. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  6. Floor RJ, Wijma HJ, Colpa DI et al (2014) Computational library design for increasing haloalkane dehalogenase stability. ChemBioChem 15:1659–1671

    Article  Google Scholar 

  7. Wijma HJ, Floor RJ, Jekel PA et al (2014) Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel 27:49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu B, Wijma HJ, Song L et al (2016) Versatile peptide C-terminal functionalization via a computationally engineered peptide amidase. ACS Catal 6:5405–5414

    Article  CAS  Google Scholar 

  9. Arabnejad H, Dal Lago M, Jekel PA et al (2017) A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Eng Des Sel 30:173. doi:10.1093/protein/gzw068

    PubMed  Google Scholar 

  10. Wijma HJ (2016) In silico screening of enzyme variants by molecular dynamics simulation. In: Svendsen AS (ed) Understanding enzymes; function, design, engineering and analysis. Pan Stanford, Singapore, pp 805–833

    Chapter  Google Scholar 

  11. Eijsink V, Gaseidnes S, Borchert T et al (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30

    Article  CAS  PubMed  Google Scholar 

  12. Veltman O, Vriend G, Hardy F et al (1997) Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. Eur J Biochem 248:433–440

    Article  CAS  PubMed  Google Scholar 

  13. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Protein Struct Funct Bioinform 79:830–838

    Article  CAS  Google Scholar 

  14. Guerois R, Nielsen J, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387

    Article  CAS  PubMed  Google Scholar 

  15. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007

    Article  CAS  PubMed  Google Scholar 

  16. van Beek HL, Wijma HJ, Fromont L et al (2014) Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio 4:168–174

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wijma HJ, Janssen DB (2013) Computational design gains momentum in enzyme catalysis engineering. FEBS J 280:2948–2960

    Article  CAS  PubMed  Google Scholar 

  18. Feldblum ES, Arkin IT (2014) Strength of a bifurcated H bond. Proc Natl Acad Sci U S A 111:4085–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lavinder JJ, Hari SB, Sullivan BJ et al (2009) High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J Am Chem Soc 131:3794–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ericsson UB, Hallberg BM, DeTitta GT et al (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union Seventh framework project Kyrobio (KBBE-2011-5, 289646), by the European Union Horizon 2020 program (project LEIT-BIO-2014-1, 635734) by NWO (Netherlands Organization for Scientific Research) through an ECHO grant, and by the Dutch Ministry of Economic Affairs through BE-Basic (www.be-basic.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hein J. Wijma or Dick B. Janssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wijma, H.J., Fürst, M.J.L.J., Janssen, D.B. (2018). A Computational Library Design Protocol for Rapid Improvement of Protein Stability: FRESCO. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics