Skip to main content

Random Spherically Constrained Single-Particle (RSC) Method to Study Voltage-Gated Ion Channels

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

To study membrane protein structures using cryo-Electron Microscopy (cryo-EM), membrane proteins are usually extracted from cell membranes and solubilized in detergents. To restore the lipid bilayer environment of membrane proteins, a method called “random spherically constrained” (RSC) single-particle cryo-EM has been developed. The RSC platform establishes the lipid environment for membrane proteins and makes it possible, for the first time, to apply the desired transmembrane potential to trap voltage-gated ion channels in the desired functional states (e.g., deactivated voltage sensor at −120 mV) for structural analysis. No rupture or leakage was observed during the establishment of the transmembrane potential. The spherical geometry of liposomes is used as a constraint to accurately determine the orientation of the inserted membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weinglass AB, Whitelegge JP, Kaback HR (2004) Integrating mass spectrometry into membrane protein drug discovery. Curr Opin Drug Discov Devel 7(5):589–599

    CAS  PubMed  Google Scholar 

  2. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444(7120):775–779

    Article  CAS  PubMed  Google Scholar 

  3. Gonen T et al (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438(7068):633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Long SB et al (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–383

    Article  CAS  PubMed  Google Scholar 

  5. Hilgemann DW (2003) Getting ready for the decade of the lipids. Annu Rev Physiol 65:697–700

    Article  CAS  PubMed  Google Scholar 

  6. Hille B et al (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 1851(6):844–856

    Article  CAS  PubMed  Google Scholar 

  7. Lee AG (2011) Biological membranes: the importance of molecular detail. Trends Biochem Sci 36(9):493–500

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461(7261):292–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856

    Article  CAS  Google Scholar 

  10. Katayama H et al (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 107(8):3453–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao Y et al (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang L, Tonggu L (2015) Membrane protein reconstitution for functional and structural studies. Sci China Life Sci 58:66–74

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Ounjai P, Sigworth FJ (2008) Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection. J Struct Biol 164:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Bose PS, Sigworth FJ (2006) Using cryo-EM to measure the dipole potential of a lipid membrane. PNAS 103(49):18528–18533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128(1):82–97

    Article  CAS  PubMed  Google Scholar 

  16. Chanda B, Mathew MK (1999) Functional reconstitution of bacterially expressed human potassium channels in proteoliposomes: membrane potential measurements with JC-1 to assay ion channel activity. Biochim Biophys Acta Biomembr 1416(1–2):92–100

    Article  CAS  Google Scholar 

  17. Reers M (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30(18):4480–4486

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, L. (2018). Random Spherically Constrained Single-Particle (RSC) Method to Study Voltage-Gated Ion Channels. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics