Skip to main content

In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish

Part of the Methods in Molecular Biology book series (MIMB,volume 1684)

Abstract

Zebrafish is a lower vertebrate model organism that facilitates integrative analysis of the in vivo effects of potassium and other ion channel mutations at the molecular, cellular, developmental, circuit, systems, and behavioral levels of analysis. Here, we describe a method for extracellular, loose patch electrophysiological recording of electrical activity in cerebellar Purkinje cells in living, awake zebrafish, with the goal of investigating pathological mechanisms underlying channelopathies or other diseases that disrupt cerebellar function. Purkinje cell excitability and a functional cerebellar circuit develop rapidly in zebrafish and show strong conservation with the mammalian cerebellum.

Key words

  • Purkinje cell
  • Cerebellum
  • Zebrafish
  • Patch clamp
  • Loose patch
  • Tonic firing
  • Complex spike
  • Spinocerebellar ataxia

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Issa FA, Mazzochi C, Mock AF, Papazian DM (2011) Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J Neurosci 31:6831–6841

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Issa FA, Mock AF, Sagasti A, Papazian DM (2012) Spinocerebellar ataxia type 13 mutation that is associated with disease onset in infancy disrupts neuronal pathfinding during neuronal development. Dis Model Mech 5:921–929

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JPA, Dürr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38:447–451

    CAS  CrossRef  PubMed  Google Scholar 

  4. Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Bürk K, Brice A, Dürr A, Papazian DM, Pulst SM (2010) KCNC3: Phenotype, mutations, channel biophysics—a study of 260 familial ataxia patients. Hum Mutat 31:191–196

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Figueroa KP, Waters M, Garibyan V, Bird TD, Gomez C, Ranum L, Minassian NA, Papazian DM, Pulst SM (2011) Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia type 13 (SCA13). PLoS One 6:e17811

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Duarri A, Nibbeling EA, Fokkens MR, Meijer M, Boerrigter M, Verschuuren-Bemelmans CC, Kremer BP, van de Warrenburg BP, Dooijes D, Boddeke E, Sinke RJ, Verbeek DS (2015) Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases. PLoS One 10:e0116599

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Minassian NA, Lin MA, Papazian DM (2012) Altered Kv3.3 channel gating in early-onset spinocerebellar ataxia type 13. J Physiol 590(7):1599–1614

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Mock AF, Richardson JL, Hsieh J-Y, Rinetti G, Papazian DM (2010) Functional effects of spinocerebellar ataxia type 13 mutations are conserved in zebrafish Kv3.3. BMC Neurosci 11:99

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Brooke RE, Moores TS, Morris NP, Parson SH, Deuchars J (2004) Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals. Eur J Neurosci 20:3313–3321

    CrossRef  PubMed  Google Scholar 

  10. Zhang Y, Kaczmarek LK (2016) Kv3.3 potassium channels and spinocerebellar ataxia. J Physiol 594(16):4677–4684

    CAS  CrossRef  PubMed  Google Scholar 

  11. Hsieh J-Y, Ulrich B, Wan J, Papazian DM (2014) Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish. Front Neural Circuits 8:147

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881–891

    CAS  CrossRef  PubMed  Google Scholar 

  13. Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912

    CAS  PubMed  Google Scholar 

  14. Martina M, Yao GL, Bean BP (2003) Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons. J Neurosci 23:5698–5707

    CAS  PubMed  Google Scholar 

  15. Akemann W, Knöpfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602–4612

    CAS  CrossRef  PubMed  Google Scholar 

  16. Westphal RE, O’Malley DM (2013) Fusion of locomotor maneuvers and improving sensory capabilities give rise to the flexible homing strikes of juvenile zebrafish. Front Neural Circuits 7:108

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Boulton AA, Baker GB, Walz W (eds) (1995) Neuromethods 26: Patch-clamp applications and protocols. Humana, New York, NY

    Google Scholar 

  18. Molleman A (2003) Patch clamping: An introductory guide to patch clamp electrophysiology. Wiley, Chichester

    Google Scholar 

  19. NIH Office of Animal Care and Use (OACU) (2016) Guidelines for use of zebrafish in the NIH intramural research program. https://oacu.oir.nih.gov/sites/default/files/uploads/arac-guidelines/zebrafish.pdf

  20. Tanabe K, Kani S, Shimizu T, Bae Y-K, Abe T, Hibi M (2010) Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. J Neurosci 30:16983–16992

    CAS  CrossRef  PubMed  Google Scholar 

  21. Nusslein-Volhard C, Dahm R (eds) (2002) Zebrafish: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  22. Wen H, Brehm P (2010) Paired patch clamp recordings from motor neuron and target skeletal muscle in zebrafish. J Vis Exp 45:e2351

    Google Scholar 

  23. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    CAS  CrossRef  PubMed  Google Scholar 

  24. Bae Y-K, Kani S, Shimizu T, Tanabe K, Hojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330:406–426

    CAS  CrossRef  PubMed  Google Scholar 

  25. Kikuta H, Kawakami K (2009) Transient and stable transgenesis using Tol2 transposon vectors. Methods Mol Biol 546:69–84

    CAS  CrossRef  PubMed  Google Scholar 

  26. Westerfield M (2007) The zebrafish book, 5th edn: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene, OR

    Google Scholar 

  27. Nasiadka A, Clark MD (2012) Zebrafish breeding in the laboratory environment. ILAR J 53:161–168

    CAS  CrossRef  PubMed  Google Scholar 

  28. Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem 272:23195–23200

    CAS  CrossRef  PubMed  Google Scholar 

  29. Pedarzani P, McCutcheon JE, Rogge G, Jensen BS, Christophersen P, Hougaard C, Strøbæk D, Stocker M (2005) Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyramidal neurons. J Biol Chem 280:41404–41411

    CAS  CrossRef  PubMed  Google Scholar 

  30. Strøbæk D, Jørgensen TD, Christophersen P, Ahring PK, Olesen S-P (2000) Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK293 cells. Br J Pharmacol 129:991–999

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Keating DJ, Rychkov GY, Roberts ML (2001) Oxygen sensitivity in the sheep adrenal medulla: role of SK channels. Am J Physiol Cell Physiol 281:C1434–C1441

    CAS  PubMed  Google Scholar 

  32. Hurd MW, Cahill GM (2002) Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythm 17:307–314

    CrossRef  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Brittany Ulrich for the image shown in Fig. 1b. This work was supported by NIH grant R01NS058500 and a UCLA Stein-Oppenheimer Seed Grant to Diane M. Papazian. Jui-Yi Hsieh was partially supported by the Jennifer S. Buchwald Graduate Fellowship in Physiology at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Papazian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hsieh, JY., Papazian, D.M. (2018). In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols