Skip to main content

Tools to Measure Cell Health and Cytotoxicity Using High Content Imaging and Analysis

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

High content screening (HCS)-based multiparametric measurements are very useful in early toxicity testing and safety assessment during drug development, and useful in evaluating the impact from new food supplements and environmental toxicants. Mitochondrial membrane potential, plasma membrane permeability, oxidative stress, phosphoplipidosis, and steatosis are a few of the important markers routinely studied for the assessment of drug-induced liver injury and toxicity. Mitochondrial dysfunction leads to oxidative stress and cell death. Liver injury from drug-induced phospholipidosis and steatosis is routinely studied in hepatotoxicity investigations to determine the risk factors and fate of drugs or chemical compounds as some drugs can lead to defects in lipid metabolism and accumulation of lipids in lysosomes. In this chapter, we describe fluorescent reagents and the protocols for the measurement of various parameters such as mitochondrial membrane potential, plasma membrane permeability, oxidative stress, phospholipidosis, and steatosis using high content imaging-based methodologies and instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lee J, Giordano S, Zhang J et al (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 441(2):523–540

    Article  CAS  Google Scholar 

  2. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  Google Scholar 

  3. Kamogashira T, Fujimoto C, Yamasoba T et al (2015) Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed Res Int 2015:1–7

    Article  Google Scholar 

  4. Lin MT, Meal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  Google Scholar 

  5. Pieczenick SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  Google Scholar 

  6. Eckert A, Keil U, Marques CA et al (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66(8):1627–1634

    Article  CAS  Google Scholar 

  7. Jiang T, Harder B, de la Vega R et al (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204

    Article  CAS  Google Scholar 

  8. Go KL, Lee S, Zendejas I et al (2015) Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury. Biomed Res Int 2015:1–14

    Article  Google Scholar 

  9. Persson M, Loye AF, Mow T et al (2013) A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods 68:302–313. (MTO and TOTO3)

    Article  CAS  Google Scholar 

  10. Dykens JA, Will Y (2007) The significance of mitochondrial toxicity testing in drug development. Drug Discov Today 12:777–785

    Article  CAS  Google Scholar 

  11. Trask JO, Moore A, LeCluyse EL (2014) A micropatterned hepatocyte coculture model for assessment of liver toxicity using high-content imaging analysis. Assay Drug Dev Technol 12:16–27. (MTO, YOYO)

    Article  CAS  Google Scholar 

  12. Abraham VC, Towne DL, Waring JF (2008) Application of a high-content multiparameter cytototoxicity assay to prioritize compounds based on toxicity potential in humans. J Biomol Screen 13:527–537. (TMRE, YOYO)

    Article  CAS  Google Scholar 

  13. Tomida T, Okamura H, Satsukawa M (2015) Multiparametric assay using HepaRG cells for predicting drug-induced liver injury. Toxicol Lett 236:16–24

    Article  CAS  Google Scholar 

  14. O’Brien PJ, Irwin W, Diaz D et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80:580–604

    Article  Google Scholar 

  15. Tolosa L, Gomez-Lechon J, Donato TM (2015) High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 89:1007–1022. (TMRM)

    Article  CAS  Google Scholar 

  16. Adler M, Ramm S, Hafner M (2015) A quantitative approach to screen for nephrotoxic compounds In Vitro. J Am Soc Nephrol 10:1681–1693. (CRDR)

    Google Scholar 

  17. Liu Y, Batchuluun B, Ho L (2015) Characterization of zinc influx transporters (ZIPs) in pancreatic β cells: roles in regulating cytosolic zinc homeostasis and insulin secretion. J Biol Chem 290:18757–18759. (CRDR)

    Article  CAS  Google Scholar 

  18. Delgado T, Carroll PA, Punjabi AS (2010) Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci U S A 107:10696–10701. (image-it dead green)

    Article  CAS  Google Scholar 

  19. Perry SW, Norman JP, Barbieri J (2011) Mitochondrial membrane potential probes and the proton gradient: a practical user guide. BioTechniques 50:98–115

    Article  CAS  Google Scholar 

  20. Huang S (2002) Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen 7:383–389

    Article  CAS  Google Scholar 

  21. Iannetti EF, Willems PHGM, Pellegrini M et al (2015) Toward high-content screening of mitochondrial morphology and membrane potential in living cells. Int J Biochem Cell Biol 63:66–70

    Article  CAS  Google Scholar 

  22. Scheiber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  Google Scholar 

  23. Sirenko O, Hesley J, Rusyn I (2014) High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. Assay Drug Dev Technol 12:43–54

    Article  CAS  Google Scholar 

  24. Saunders DN, Falkenberg KJ, Simpson KJ (2014) High-throughput approaches to measuring cell death. Cold Spring Harb Protoc 10:591–601

    Google Scholar 

  25. Giuliano KA, Gough AH, Taylor DL et al (2010) Early safety assessment using cellular systems biology yields insights into mechanisms of action. J Biomol Screen 15:783–797. (TMRE and DHE)

    Article  CAS  Google Scholar 

  26. Lannetti EF, Willems PHGM, Pellegrini M et al (2015) Toward high-content screening of mitochondrial morphology and membrane potential in living cells. Int J Biochem Cell Biol 63:66–70

    Article  Google Scholar 

  27. Alileche A, Goswami J, Bourland W (2012) Nullomer derived anticancer peptides (NulloPs): differential lethal effects on normal and cancer cells in vitro. Peptides 38:302–311. (HCS mitoHealth Kit/PI/DHE)

    Article  CAS  Google Scholar 

  28. Wilson MS, Graham JR, Ball A (2014) Multiparametric high content analysis for assessment of neurotoxicity in differentiated neuronal cell lines and human embryonic stem cell-derived neurons. Neurotoxicology 42:33–48. (mitotracker red)

    Article  CAS  Google Scholar 

  29. Wilson J, Berntsen HF, Zimmer KS (2016) Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening. Toxicol Appl Pharmacol 294:21–31. (CRDR)

    Article  CAS  Google Scholar 

  30. De Raad M, Teunissen EA, Lelieveld D et al (2012) High-content screening of peptide-based non-viral gene delivery systems. J Control Release 158:433–442. (Live Dead)

    Article  Google Scholar 

  31. Selvaratnam J, Paul C, Robaire B (2015) Male rat germ cells display age-dependent and cell-specific susceptibility in response to oxidative stress challenges. Biol Reprod 93:1–17. (CellEvent and CellROX)

    Article  CAS  Google Scholar 

  32. Becker B, Clapper J, Harkins KR et al (1994) In Situ screening assay for cell viability using a dimeric cyanine nucleic acid stain. Anal Biochem 221:78–84

    Article  CAS  Google Scholar 

  33. Bauch C, Bevan S, Woodhouse H (2015) Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modeling approach. Toxicol In Vitro 29:621–630

    Article  CAS  Google Scholar 

  34. Van de Water FM, Havinga J, Ravesloot WT (2011) High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. Toxicol In Vitro 25:1870–1882

    Article  Google Scholar 

  35. Billis P, Will Y, Nadanaciva S (2014) High-content imaging assays for identifying compounds that generate superoxide and impair mitochondrial membrane potential in adherent eukaryotic cells. Curr Protoc Toxicol 25:1.1–1.25

    Google Scholar 

  36. Labbe G, Pessayre D, Fromenty B (2008) Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol 22:335–353

    Article  CAS  Google Scholar 

  37. Donato MT, Gomez-Lechon MJ (2012) Drug-induced liver steatosis and phospholipidosis: cell-based assays for early screening of drug candidates. Curr Drug Metab 13:1160–1173

    Article  CAS  Google Scholar 

  38. Willebrods J, Pereira IVA, Maes M et al (2015) Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 59:106–125

    Article  Google Scholar 

  39. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  Google Scholar 

  40. Criddle DN, Gillies S, Baumgartner-Wilson HK et al (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492

    Article  CAS  Google Scholar 

  41. Vessey DA, Lee KH, Blacker KL (1992) Characterization of the oxidative stress initiated in cultured human keratinocytes by treatment with peroxides. J Invest Dermatol 97:442–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar S. Mandavilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandavilli, B.S., Aggeler, R.J., Chambers, K.M. (2018). Tools to Measure Cell Health and Cytotoxicity Using High Content Imaging and Analysis. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics