Advertisement

Bacteriophages pp 197-215 | Cite as

Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis

  • Ramy Karam AzizEmail author
  • Hans-Wolfgang Ackermann
  • Nicola K. Petty
  • Andrew M. Kropinski
Part of the Methods in Molecular Biology book series (MIMB, volume 1681)

Abstract

Because of the rise in antimicrobial resistance there has been a significant increase in interest in phages for therapeutic use. Furthermore, the cost of sequencing phage genomes has decreased to the point where it is being used as a teaching tool for genomics. Unfortunately, the quality of the descriptions of the phage and its annotation frequently are substandard. The following chapter is designed to help people working on phages, particularly those new to the field, to accurately describe their newly isolated viruses.

Key words

Annotation CDS Electron microscopy Genomes Locus tag ORF Phage Promoter Software Taxonomy Terminator 

Reference

  1. 1.
    Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 32:D45–D49CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abedon ST, Ackermann H-W (2001) Bacteriophage names 2000. The Bacteriophage Ecology Group (BEG). http://www.phage.org/names.htm
  4. 4.
    Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11:2775–2777CrossRefPubMedGoogle Scholar
  5. 5.
    Roberts RJ, Vincze T, Posfai J, Macelis D (2003) REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31:418–420CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849CrossRefPubMedGoogle Scholar
  7. 7.
    Ackermann H-W (2014) Sad state of phage electron microscopy. Please shoot the messenger. Microorganisms 2:1–10CrossRefGoogle Scholar
  8. 8.
    Ackermann HW, Tiekotter KL (2012) Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy. Bacteriophage 2:122–129CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li SS, Fan H, An XP, Fan HH, Jiang HH, Mi ZQ, Tong YG (2013) Utility of high throughput sequencing technology in analyzing the terminal sequence of caudovirales bacteriophage genome. Bing Du Xue Bao 29:39–43PubMedGoogle Scholar
  11. 11.
    Lingohr E, Frost S, Johnson RP (2009) Determination of bacteriophage genome size by pulsed-field gel electrophoresis. Methods Mol Biol 502:19–25CrossRefPubMedGoogle Scholar
  12. 12.
    Tamakoshi M, Murakami A, Sugisawa M, Tsuneizumi K, Takeda S, Saheki T, Izumi T, Akiba T, Mitsuoka K, Toh H, Yamashita A, Arisaka F, Hattori M, Oshima T, Yamagishi A (2011) Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage 1:152–164CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sharp R, Jansons IS, Gertman E, Kropinski AM (1996) Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. Gene 177:47–53CrossRefPubMedGoogle Scholar
  14. 14.
    Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW (2000) Genetic sequences of bacteriophages HK97 and HK022: Pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51CrossRefPubMedGoogle Scholar
  15. 15.
    Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the ϕKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Glukhov AS, Krutilina AI, Shlyapnikov MG, Severinov K, Lavysh D, Kochetkov VV, McGrath JW, de LC SOV, Krylov VN, Akulenko NV, Kulakov LA (2012) Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions. PLoS One 7:e51163CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Darling AE, Mau B (2010) Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423CrossRefPubMedGoogle Scholar
  19. 19.
    Becker EA, Burns CM, Leon EJ, Rajabojan S, Friedman R, Friedrich TC, O'Connor SL, Hughes AL (2012) Experimental analysis of sources of error in evolutionary studies based on Roche/454 pyrosequencing of viral genomes. Genome Biol Evol 4:457–465CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7:768–771CrossRefPubMedGoogle Scholar
  22. 22.
    Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10:76CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, Parkhill J, Rajandream MA (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kropinski AM, Borodovsky M, Carver TJ, Cerdeno-Tarraga AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Van DG, Wishart DS (2009) In silico identification of genes in bacteriophage DNA. Methods Mol Biol 502:57–89CrossRefPubMedGoogle Scholar
  27. 27.
    Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167CrossRefPubMedGoogle Scholar
  28. 28.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA III, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Stevens RL, Vonstein V, Xia F (2012) SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7:e48053CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069CrossRefPubMedGoogle Scholar
  32. 32.
    Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu P, Szafron D, Greiner R, Wishart DS (2005) BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 33:W455–W459CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S, White O, Wortman J, Mahurkar A, Giglio MG (2011) The IGS standard operating procedure for automated prokaryotic annotation. Stand Genomic Sci 4:244–251CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Campbell MS, Holt C, Moore B, Yandell M (2014) Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinformatics 48:4.11.1–4.11.39. doi: 10.1002/0471250953.bi0411s48.:4 CrossRefGoogle Scholar
  35. 35.
    Pearson WR (2013) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics, Chapter 3:Unit3.1.:Unit3Google Scholar
  36. 36.
    Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222CrossRefPubMedGoogle Scholar
  37. 37.
    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229CrossRefPubMedGoogle Scholar
  39. 39.
    Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Holbrook R, Anderson JM, Baird-Parker AC (1969) The performance of a stable version of Baird-Parker’s medium for isolating Staphylococcus aureus. J Appl Bacteriol 32:187–192CrossRefPubMedGoogle Scholar
  41. 41.
    Calderon IL, Arenas FA, Perez JM, Fuentes DE, Araya MA, Saavedra CP, Tantalean JC, Pichuantes SE, Youderian PA, Vasquez CC (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:e70CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Walter EG, Thomas CM, Ibbotson JP, Taylor DE (1991) Transcriptional analysis, translational analysis, and sequence of the kilA-tellurite resistance region of plasmid RK2Ter. J Bacteriol 173:1111–1119CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Whelan KF, Colleran E, Taylor DE (1995) Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol 177:5016–5027CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    O'Gara JP, Gomelsky M, Kaplan S (1997) Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63:4713–4720PubMedPubMedCentralGoogle Scholar
  45. 45.
    Fischer D, Eisenberg D (1999) Finding families for genomic ORFans. Bioinformatics 15:759–762CrossRefPubMedGoogle Scholar
  46. 46.
    Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. AAAI Press, Menlo Park, CA, pp 28–36Google Scholar
  47. 47.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lavigne R, Sun WD, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–6135CrossRefPubMedGoogle Scholar
  49. 49.
    Lavigne R, Villegas A, Kropinski AM (2009) In silico characterization of DNA motifs with particular reference to promoters and terminators. Methods Mol Biol 502:113–129. doi: 10.1007/978-1-60327-565-1_8 CrossRefPubMedGoogle Scholar
  50. 50.
    Jeng ST, Lay SH, Lai HM (1997) Transcription termination by bacteriophage T3 and SP6 RNA polymerases at Rho-independent terminators. Can J Microbiol 43:1147–1156CrossRefPubMedGoogle Scholar
  51. 51.
    Mitra A, Kesarwani AK, Pal D, Nagaraja V (2011) WebGeSTer DB--a transcription terminator database. Nucleic Acids Res 39:D129–D135CrossRefPubMedGoogle Scholar
  52. 52.
    Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8:11–13CrossRefPubMedGoogle Scholar
  53. 53.
    Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, NY, pp 61–78Google Scholar
  54. 54.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rice P, Longden I, Bleasby A, Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  56. 56.
    Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR (2014) Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2:e00927–e00914CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedGoogle Scholar
  58. 58.
    Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedGoogle Scholar
  59. 59.
    Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913. doi: 10.1186/1471-2164-14-913.:913-914 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi: 10.1186/1471-2164-12-402.:402-412 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539CrossRefPubMedGoogle Scholar
  65. 65.
    Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG (2005) WebACT--an online companion for the Artemis Comparison Tool. Bioinformatics 21:3665–3666CrossRefPubMedGoogle Scholar
  66. 66.
    Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414CrossRefPubMedGoogle Scholar
  67. 67.
    Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann H-W, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kovalyova IV, Kropinski AM (2003) The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida-evidence for close relationship to the T7 group. Virology 311:305–315CrossRefPubMedGoogle Scholar
  69. 69.
    Kropinski AM, Lingohr EJ, Moyles DM, Ojha S, Mazzocco A, She YM, Bach SJ, Rozema EA, Stanford K, McAllister TA, Johnson RP (2012) Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. J Virol 9:207CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Wang K, Jiao N, Chen F (2009) Genome sequences of two novel phages infecting marine roseobacters. Environ Microbiol 11:2055–2064CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hatfull GF (2012) The secret lives of mycobacteriophages. Adv Virus Res 82:179–288CrossRefPubMedGoogle Scholar
  72. 72.
    Hatfull GF (2012) Complete genome sequences of 138 mycobacteriophages. J Virol 86:2382–2384CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hatfull GF (2014) Molecular genetics of Mycobacteriophages. Microbiol Spect 2:1–36CrossRefGoogle Scholar
  74. 74.
    Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: The tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468-470:421–443CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Ramy Karam Aziz
    • 1
    Email author
  • Hans-Wolfgang Ackermann
    • 2
  • Nicola K. Petty
    • 3
  • Andrew M. Kropinski
    • 4
  1. 1.Department of Microbiology and Immunology, Faculty of PharmacyCairo UniversityCairoEgypt
  2. 2.Department of Microbiology, Immunology, and Infectiology, Faculty of MedicineUniversité LavalQuebecCanada
  3. 3.The ithree InstituteUniversity of Technology SydneySydneyAustralia
  4. 4.Departments of Food Science, Molecular and Cellular Biology, and PathobiologyUniversity of GuelphGuelphCanada

Personalised recommendations