Skip to main content

Reconstitution of RNA Interference Machinery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1680))

Abstract

Small RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), silence protein expression from target mRNAs bearing their complementary sequences, via the formation of the effector complex called RNA-induced silencing complex (RISC). Although the mechanism of RISC assembly has been studied for nearly two decades, the detailed mechanism has still remained unclear in part due to the lack of a pure reconstitution system. Recently, we identified all the core proteins necessary for RISC assembly in flies and successfully recapitulated the assembly of catalytically active RISC with eight recombinant proteins. The reconstitution system provides a versatile framework for detailed studies of RISC assembly, including single molecule analysis as described in another chapter in this issue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hock J, Weinmann L, Ender C et al (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8:1052–1060

    Article  PubMed  PubMed Central  Google Scholar 

  2. Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meister G, Landthaler M, Peters L et al (2005) Identification of novel Argonaute-associated proteins. Curr Biol 15:2149–2155

    Article  CAS  PubMed  Google Scholar 

  4. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  6. Iki T, Yoshikawa M, Nishikiori M et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39:282–291

    Article  CAS  PubMed  Google Scholar 

  7. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  CAS  PubMed  Google Scholar 

  8. Kawamata T, Seitz H, Tomari Y (2009) Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16:953–960

    Article  CAS  PubMed  Google Scholar 

  9. Yoda M, Kawamata T, Paroo Z et al (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17:17–23

    Article  CAS  PubMed  Google Scholar 

  10. Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026

    Article  CAS  PubMed  Google Scholar 

  11. Iwasaki S, Kobayashi M, Yoda M et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299

    Article  CAS  PubMed  Google Scholar 

  12. Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G (2010) HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 21:1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwak PB, Tomari Y (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 19:145–151

    Article  CAS  PubMed  Google Scholar 

  14. Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  CAS  PubMed  Google Scholar 

  15. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  PubMed  Google Scholar 

  16. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19:2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Ye X, Jiang F et al (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye X, Huang N, Liu Y et al (2011) Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol 18:650–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y (2015) Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521:533–536

    Article  CAS  PubMed  Google Scholar 

  21. Smith DF, Toft DO (2008) Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol Endocrinol 22:2229–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Q, Rand TA, Kalidas S et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12:1514–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elkayam E, Kuhn CD, Tocilj A et al (2012) The structure of human Argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486:368–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakanishi K, Ascano M, Gogakos T et al (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3:1893–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3:1901–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Dayalan Naidu S, Samarasinghe K et al (2014) Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation. Br J Cancer 110:71–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to members of Tomari laboratory and Iwasaki laboratory for critical reading of this manuscript. This work is supported by in part by Grants-in-Aid for Scientific Research on Innovative Areas (‘Functional machinery for non-coding RNAs’ 21115002 and ‘Non-coding RNA neo-taxonomy’ 26113007) (to Y.T.), and a Grant-in-Aid for Scientific Research on Innovative Areas (‘nascent chain biology’ JP17H05679) and Grant-in-Aid for Young Scientists (‘Start-up’ 23870004 and ‘A’ JP17H04998) (to S.I.) from The Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihide Tomari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Iwasaki, S., Tomari, Y. (2018). Reconstitution of RNA Interference Machinery. In: Okamura, K., Nakanishi, K. (eds) Argonaute Proteins. Methods in Molecular Biology, vol 1680. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7339-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7339-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7338-5

  • Online ISBN: 978-1-4939-7339-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics