Skip to main content

Identification of Parent-of-Origin-Dependent QTLs Using Bulk-Segregant Sequencing (Bulk-Seq)

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Parent-of-origin effects play important roles in plant reproduction and are often mediated by epigenetic modifications at the histone or DNA level. However, the genetic basis underlying these modifications can be challenging to identify. Here, we describe an approach (Bulk-Seq) that can be used to map loci mediating parent-of-origin-dependent effects using whole-genome sequencing of pools of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Raissig MT, Baroux C, Grossniklaus U (2011) Regulation and flexibility of genomic imprinting during seed development. Plant Cell 23:16–26. doi:10.1105/tpc.110.081018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pires N (2014) Seed evolution: parental conflicts in a multi-generational household. Biomol Concepts 5:71–86

    Article  CAS  PubMed  Google Scholar 

  3. García-Aguilar M, Gillmor CS (2015) Zygotic genome activation and imprinting: Parent-of-origin gene regulation in plant embryogenesis. Curr Opin Plant Biol 27:29–35. doi:10.1016/j.pbi.2015.05.020

    Article  PubMed  Google Scholar 

  4. Piskurewicz U, Iwasaki M, Susaki D et al (2016) Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. Elife 5:e19573

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pires ND, Bemer M, Müller LM et al (2016) Quantitative genetics identifies cryptic genetic variation involved in the paternal regulation of seed development. PLoS Genet 12:e1005806. doi:10.1371/journal.pgen.1005806

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446–450. doi:10.1126/science.280.5362.446

    Article  CAS  PubMed  Google Scholar 

  7. Makarevich G, Leroy O, Akinci U et al (2006) Different polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952. doi:10.1038/sj.embor.7400760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. doi:10.1111/tpj.12105

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z, Huang D, Tang W et al (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS One 8:e68433. doi:10.1371/journal.pone.0068433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:1

    Google Scholar 

  11. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alonso-Blanco C, Andrade J, Becker C et al (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491. doi:10.1016/j.cell.2016.05.063

    Article  Google Scholar 

  14. Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255. doi:10.1371/journal.pcbi.1002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  18. Schneeberger K, Ossowski S, Ott F et al (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108:10249–10254. doi:10.1073/pnas.1107739108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno D. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pires, N.D., Grossniklaus, U. (2018). Identification of Parent-of-Origin-Dependent QTLs Using Bulk-Segregant Sequencing (Bulk-Seq). In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics