Abstract
Dynamic reshuffling of the chromatin landscape is a recurrent theme orchestrated in many, if not all, plant developmental transitions and adaptive responses. Spatiotemporal variations of the chromatin properties on regulatory genes and on structural genomic elements trigger the establishment of distinct transcriptional contexts, which in some instances can epigenetically be inherited. Studies on plant cell plasticity during the differentiation of stem cells, including gametogenesis, or the specialization of vegetative cells in various organs, as well as the investigation of allele-specific gene regulation have long been impaired by technical challenges in generating specific chromatin profiles in complex or hardly accessible cell populations. Recent advances in increasing the sensitivity of genome-enabled technologies and in the isolation of specific cell types have allowed for overcoming such limitations. These developments hint at multilevel regulatory events ranging from nucleosome accessibility and composition to higher order chromatin organization and genome topology. Uncovering the large extent to which chromatin dynamics and epigenetic processes influence gene expression is therefore not surprisingly revolutionizing current views on plant molecular genetics and (epi)genomics as well as their perspectives in eco-evolutionary biology. Here, we introduce current methodologies to probe genome-wide chromatin variations for which protocols are detailed in this book chapter, with an emphasis on the plant model species Arabidopsis.
Key words
- Chromatin
- Histone
- DNA methylation
- Epigenome
- Methodology
This is a preview of subscription content, access via your institution.


References
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412. doi:10.1038/nature05915
Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005
Li G, Zhu P (2015) Structure and organization of chromatin fiber in the nucleus. FEBS Lett 589:2893–2904. doi:10.1016/j.febslet.2015.04.023
Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401
Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 [angst] resolution. Nature 311:532–537. doi:10.1038/311532a0
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. doi:10.1038/38444
Jiang J, Zhang T, Zhang W (2015) Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol 168(4):1406. doi:10.1104/pp.15.00125
Cutter AR, Hayes JJ (2015) A brief review of nucleosome structure. FEBS Lett 589:2914–2922. doi:10.1016/j.febslet.2015.05.016
Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172. doi:10.1038/nrg2522
Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11:227–240
Fransz P, de Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J Cell Mol Biol 66:4–17. doi:10.1111/j.1365-313X.2011.04526.x
Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273. doi:10.1038/nsmb.2506
Liu M-J, Seddon AE, Tsai ZT-Y, Major IT, Floer M, Howe GA, Shiu S-H (2015) Determinants of nucleosome positioning and their influence on plant gene expression. Genome Res 25(8):1182. doi:10.1101/gr.188680.114
Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241. doi:10.1101/gad.176826.111
Zentner GE, Henikoff S (2012) Surveying the epigenomic landscape, one base at a time. Genome Biol 13:250. doi:10.1186/gb-2012-13-10-250
Jiang D, Berger F (2016) Histone variants in plant transcriptional regulation. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2016.07.002
Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159:458–458.e1. doi:10.1016/j.cell.2014.09.037
Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294. doi:10.1016/S0092-8674(00)81958-3
Feng J, Shen WH (2014) Dynamic regulation and function of histone monoubiquitination in plants. Front Plant Sci 5:83. doi:10.3389/fpls.2014.00083
Shogren-Knaak M, Ishii H, Sun J-M, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847. doi:10.1126/science.1124000
Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825
Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113–119
Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 40:689–701
Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151. doi:10.1038/nmeth.1828
Chen Y-R, Sheng Y, Zhong S (2017) Profiling DNA methylation using bisulfite sequencing (BS-Seq). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_2
Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220
Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179–186
Baroux C, Raissig MT, Grossniklaus U (2011) Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev 21:124–133. doi:10.1016/j.gde.2011.01.017
Jullien PE, Susaki D, Yelagandula R, Higashiyama T, Berger F (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr Biol 22:1825–1830. doi:10.1016/j.cub.2012.07.061
Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622. doi:10.1126/science.1194776
Berger F, Gaudin V (2003) Chromatin dynamics and Arabidopsis development. Chromosome Res 11:277–304
Crevillen P, Dean C (2010) Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol 14:38–44
Berr A, Shafiq S, Shen W-H (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809:567–576
He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435
Grimanelli D, Roudier F (2013) Epigenetics and development in plants: green light to convergent innovations. Curr Top Dev Biol 104:189–222. doi:10.1016/B978-0-12-416027-9.00006-1
Patel DJ, Wang Z (2013) Readout of epigenetic modifications. Annu Rev Biochem 82:81–118. doi:10.1146/annurev-biochem-072711-165700
Liu C, Weigel D (2015) Chromatin in 3D: progress and prospects for plants. Genome Biol 16:170. doi:10.1186/s13059-015-0738-6
Barneche F, Malapeira J, Mas P (2014) The impact of chromatin dynamics on plant light responses and circadian clock function. J Exp Bot 65:2895–2913. doi:10.1093/jxb/eru011
Perrella G, Kaiserli E (2016) Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants. New Phytol 212:908–919. doi:10.1111/nph.14269
Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT, Sabo PJ, Sandstrom R, Thurman RE, Neph S, Reynolds AP, Stergachis AB, Vernot B, Johnson AK, Haugen E, Sullivan ST, Thompson A, Neri FV 3rd, Weaver M, Diegel M, Mnaimneh S, Yang A, Hughes TR, Nemhauser JL, Queitsch C, Stamatoyannopoulos JA (2014) Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep 8:2015–2030. doi:10.1016/j.celrep.2014.08.019
Charron J-BF, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748
Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Bowler C, Barneche F (2012) Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet 8:e1002825. doi:10.1371/journal.pgen.1002825
Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903
Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190. doi:10.1038/nplants.2015.190
March-Díaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2(7):565–577. doi:10.1093/mp/ssp019
Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147
Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245. doi:10.1038/nature10928
Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988. doi:10.1371/journal.pgen.1002988
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–354. doi:10.1126/science.1226339
Baerenfaller K, Shu H, Hirsch-Hoffmann M, Fütterer J, Opitz L, Rehrauer H, Hennig L, Gruissem W (2016) Diurnal changes in the histone H3 signature H3K9ac|H3K27ac|H3S28p are associated with diurnal gene expression in Arabidopsis. Plant Cell Environ 39:2557–2569. doi:10.1111/pce.12811
Seo PJ, Mas P (2015) STRESSing the role of the plant circadian clock. Trends Plant Sci 20:230–237. doi:10.1016/j.tplants.2015.01.001
Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224
Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938
Sequeira-Mendes J, Araguez I, Peiro R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C (2014) The functional topography of the arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26:2351–2366. doi:10.1105/tpc.114.124578
Baker K, Dhillon T, Colas I, Cook N, Milne I, Milne L, Bayer M, Flavell AJ (2015) Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Plant J 84:111–124. doi:10.1111/tpj.12963
Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678. doi:10.1038/nrg.2016.112
Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693. doi:10.1016/j.molcel.2014.07.009
Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707. doi:10.1016/j.molcel.2014.07.008
Veluchamy A, Jégu T, Ariel F, Latrasse D, Mariappan KG, Kim S-K, Crespi M, Hirt H, Bergounioux C, Raynaud C, Benhamed M (2016) LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the arabidopsis genome. PLoS One 11:e0158936. doi:10.1371/journal.pone.0158936
Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D (2016) Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 26(8):1057. doi:10.1101/gr.204032.116
Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D (2014) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25(2):246. doi:10.1101/gr.170332.113
Zhang Y, Wong C-H, Birnbaum RY, Li G, Favaro R, Ngan CY, Lim J, Tai E, Poh HM, Wong E, Mulawadi FH, Sung W-K, Nicolis S, Ahituv N, Ruan Y, Wei C-L (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–310. doi:10.1038/nature12716
van Koningsbruggen S, Gierliński M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748. doi:10.1091/mbc.E10-06-0508
Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889. doi:10.1371/journal.pgen.1000889
Pontvianne F, Carpentier M-C, Durut N, Pavlištová V, Jaške K, Schořová Š, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, Fajkus J, Sáez-Vásquez J (2016) Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16:1574–1587. doi:10.1016/j.celrep.2016.07.016
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014. doi:10.1038/ng1852
Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109:21540–21545. doi:10.1073/pnas.1217022110
Takahashi N, Hirata Y, Aihara K, Mas P (2015) A hierarchical multi-oscillator network orchestrates the arabidopsis circadian system. Cell 163(1):148–159. doi:10.1016/j.cell.2015.08.062
Engelhorn J, Wellmer F, Carles CC (2017) Profiling histone modifications in synchronised floral tissues for quantitative resolution of chromatin and transcriptome dynamics. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_16
Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68. doi:10.1038/nprot.2010.175
Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030. doi:10.1016/j.devcel.2010.05.013
Morao K, Caillieux E, Colot V, Roudier F (2017) Cell type-specific profiling of chromatin modifications and associated proteins. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_8
Erhard KF, Talbot J-ERB, Deans NC, McClish AE, Hollick JB (2015) Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 199:1107–1125. doi:10.1534/genetics.115.174714
Hetzel J, Duttke SH, Benner C, Chory J (2016) Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci 113:12316–12321. doi:10.1073/pnas.1603217113
Bourbousse C, Mestiri I, Zabulon G, Bourge M, Formiggini F, Koinig M, Spencer CB, Fransz P, Bowler C, Barneche F (2015) Heterochromatin reorganization during photomorphogenic reprogramming of plant development. Proc Natl Acad Sci U S A 112:E2836–E2844. doi:10.1073/pnas.1503512112
Huang H, Lin S, Garcia BA, Zhao Y (2015) Quantitative proteomic analysis of histone modifications. Chem Rev 115:2376–2418. doi:10.1021/cr500491u
Sidoli S, Cheng L, Jensen ON (2012) Proteomics in chromatin biology and epigenetics: elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 75(6):3419–3433. doi:10.1016/j.jprot.2011.12.029
Zheng Y, Huang X, Kelleher NL (2016) Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol 33:142–150. doi:10.1016/j.cbpa.2016.06.007
Mahrez W, Hennig L (2017) Mapping of histone modifications in plants by tandem mass spectrometry. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_9
Kotliński M, Jerzmanowski A (2017) Histone H1 purification and PTM profiling by high-sensitive MS approaches (Orbitrap). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_10
Bergmuller E, Gehrig PM, Gruissem W (2007) Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. J Proteome Res 6:3655–3668
Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu J-K (2007) Distinctive core histone post-translational modification patterns in arabidopsis thaliana. PLoS One 2:e1210
Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169:173–184. doi:10.1534/genetics.104.033191
Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058. doi:10.1016/S0960-9822(02)00901-6
Kotliński M, Rutowicz K, Kniżewski Ł, Palusiński A, Olędzki J, Fogtman A, Rubel T, Koblowska M, Dadlez M, Ginalski K, Jerzmanowski A (2016) Histone H1 variants in arabidopsis are subject to numerous post-translational modifications, both conserved and previously unknown in histones, suggesting complex functions of H1 in plants. PLoS One 11:e0147908. doi:10.1371/journal.pone.0147908
Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205. doi:10.1016/j.cell.2013.02.033
Rutowicz K, Puzio M, Halibart-Puzio J, Lirski M, Kroten MA, Kotlinski M, Knizewski L, Lange B, Muszewska A, Sniegowska-Swierk K, Koscielniak J, Iwanicka-Nowicka R, Zmuda K, Buza K, Janowiak F, Joesaar I, Laskowska-Kaszub K, Fogtman A, Zielenkiewicz P, Tiuryn J, Kollist H, Siedlecki P, Ginalski K, Swiezewski S, Koblowska M, Archacki R, Wilczynski B, Rapacz M, Jerzmanowski A (2015) A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol 169(3):2080. doi:10.1104/pp.15.00493
Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D, Couture JF, Martienssen RA (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343:1249–1253. doi:10.1126/science.1248357
Johnson L, Mollah S, Garcia BA, Muratore TL, Shabanowitz J, Hunt DF, Jacobsen SE (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32:6511–6518. doi:10.1093/nar/gkh992
Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E (2013) Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J 73:77–90. doi:10.1111/tpj.12017
Desvoyes B, Sequeira-Mendes J, Vergara Z, Madeira S, Gutierrez C (2017) Sequential ChIP protocol for profiling bivalent epigenetic modifications (ReChIP). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_6
Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, Helin K (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969. doi:10.1093/nar/gkq244
Gendrel A-V, Lippman Z, Martienssen R, Colot V (2005) Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2:213–218. doi:10.1038/nmeth0305-213
Desvoyes B, Vergara Z, Sequeira-Mendes JO, Madeira S, Gutierrez C (2017) A rapid and efficient ChIP protocol to profile chromatin binding proteins and epigenetic modifications in bulk Arabidopsis tissue. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_5
Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831. doi:10.1101/gr.136184.111
Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93. doi:10.1038/nsmb.1972
Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156. doi:10.1371/journal.pone.0003156
Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, Willis IM, Herr W, Hernandez N, Delorenzi M, The CycliX Consortium (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168. doi:10.1101/gr.168260.113
Orlando DA, Chen MW, Brown VE, Solanki S, Choi YJ, Olson ER, Fritz CC, Bradner JE, Guenther MG (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170. doi:10.1016/j.celrep.2014.10.018
Egan B, Yuan C-C, Craske ML, Labhart P, Guler GD, Arnott D, Maile TM, Busby J, Henry C, Kelly TK, Tindell CA, Jhunjhunwala S, Zhao F, Hatton C, Bryant BM, Classon M, Trojer P (2016) An alternative approach to ChIP-Seq normalization enables detection of genome-wide changes in histone H3 lysine 27 trimethylation upon EZH2 inhibition. PLoS One 11:e0166438. doi:10.1371/journal.pone.0166438
Grzybowski AT, Chen Z, Ruthenburg AJ (2015) Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide. Mol Cell 58:886–899. doi:10.1016/j.molcel.2015.04.022
Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci 109:5370–5375. doi:10.1073/pnas.1203145109
Wollmann H, Holec S, Alden K, Clarke ND, Jacques P-É, Berger F (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the arabidopsis transcriptome. PLoS Genet 8:e1002658. doi:10.1371/journal.pgen.1002658
Pajoro A, Muiňo J, Angenent G, Kaufmann K (2017) Profiling nucleosome occupancy by MNase-seq: experimental protocol and computational analysis. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_11
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK (2014) Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. Plant Cell 26(12):4903. doi:10.1105/tpc.114.130427
Chodavarapu R, Feng S, Bernatavichute Y, Chen P, Stroud H, Yu Y, Hetzel J, Kuo F, Kim J, Cokus S, Casero D, Bernal M, Huijser P, Clark A, Kramer U, Merchant S, Zhang X, Jacobsen S, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392
Li G, Liu S, Wang J, He J, Huang H, Zhang Y, Xu L (2014) ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J 78:706–714. doi:10.1111/tpj.12499
Wu Y, Zhang W, Jiang J (2014) Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice. PLoS Genet 10:e1004378. doi:10.1371/journal.pgen.1004378
Fincher JA, Vera DL, Hughes DD, McGinnis KM, Dennis JH, Bass HW (2013) Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales. Plant Physiol 162:1127–1141. doi:10.1104/pp.113.216432
Vera DL, Madzima TF, Labonne JD, Alam MP, Hoffman GG, Girimurugan SB, Zhang J, McGinnis KM, Dennis JH, Bass HW (2014) Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize. Plant Cell 26:3883–3893. doi:10.1105/tpc.114.130609
Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129. doi:10.1105/tpc.110.078493
Sacharowski SP, Gratkowska DM, Sarnowska EA, Kondrak P, Jancewicz I, Porri A, Bucior E, Rolicka AT, Franzen R, Kowalczyk J, Pawlikowska K, Huettel B, Torti S, Schmelzer E, Coupland G, Jerzmanowski A, Koncz C, Sarnowski TJ (2015) SWP73 subunits of arabidopsis SWI/SNF chromatin remodeling complexes play distinct roles in leaf and flower development. Plant Cell 27:1889–1906. doi:10.1105/tpc.15.00233
Jegu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F (2014) The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 26(2):538. doi:10.1105/tpc.113.114454
Simon JM, Giresi PG, Davis IJ, Lieb JD (2012) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7:256–267. doi:10.1038/nprot.2011.444
Gangadharan S, Mularoni L, Fain-Thornton J, Wheelan SJ, Craig NL (2010) DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo. Proc Natl Acad Sci 107:21966–21972. doi:10.1073/pnas.1016382107
Bajic M, Maher KA, Deal RB (2017) Identification of open chromatin regions in plant genomes using ATAC-Seq. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_12
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. doi:10.1038/nmeth.2688
Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490. doi:10.1038/nature14590
Lu Z, Hofmeister BT, Vollmers C, RM DB, Schmitz RJ (2017) Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res 45(6):e41. doi:10.1093/nar/gkw1179. gkw1179
Piper J, Elze MC, Cauchy P, Cockerill PN, Bonifer C, Ott S (2013) Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Res 41:e201–e201. doi:10.1093/nar/gkt850
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci 89:1827–1831. doi:10.1073/pnas.89.5.1827
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. doi:10.1038/nature06745
Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in arabidopsis. Cell 133:523–536
Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364
Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(3):95–109. doi:10.1016/j.cell.2014.02.045
Becker C, Weigel D (2012) Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol 15(5):562. doi:10.1016/j.pbi.2012.08.004
Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472. doi:10.1016/j.cell.2008.12.038
Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijo JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205. doi:10.1016/j.cell.2012.09.001
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364. doi:10.1126/science.1224839
Martínez G, Panda K, Köhler C, Slotkin RK (2016) Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants 2:16030. doi:10.1038/nplants.2016.30
Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013) Patterns of population epigenomic diversity. Nature 495:193–198. doi:10.1038/nature11968
Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Paolo Casale F, Drewe P, Kahles A, Jean G, Vilhjálmsson B, Jagoda J, Irez S, Voronin V, Song Q, Long Q, Rätsch G, Stegle O, Clark RM, Nordborg M (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:e05255. doi:10.7554/eLife.05255
Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, Zytnicki M, Albani MC, Kiefer C, Bergonzi S, Castaings L, Mateos JL, Berns MC, Bujdoso N, Piofczyk T, de Lorenzo L, Barrero-Sicilia C, Mateos I, Piednoël M, Hagmann J, Chen-Min-Tao R, Iglesias-Fernández R, Schuster SC, Alonso-Blanco C, Roudier F, Carbonero P, Paz-Ares J, Davis SJ, Pecinka A, Quesneville H, Colot V, Lysak MA, Weigel D, Coupland G, Schneeberger K (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants 1:14023. doi:10.1038/nplants.2014.23
Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V (2016) The Arabidopsis thaliana mobilome and its impact at the species level. Elife 5:e15716. doi:10.7554/eLife.15716
Edelmann S, Scholten S (2017) Bisulphite sequencing using small DNA amounts. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_3
Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476. doi:10.1038/nrg2341
Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249. doi:10.1038/nature10555
Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334(6054):369. doi:10.1126/science.1212959
Kishore K, Pelizzola M (2017) Identification of differentially methylated regions in the Arabidopsis thaliana genome. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_4
Lieberman-Aiden E, Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289. doi:10.1126/science.1181369
Baccarini J (1908) Sulle cinesi vegitative de Cynomorium coccineum L. Nuovo Giorn Botan Ital 15:189–203
Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Bot 69:762–818
Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci U S A 99:14584–14589
Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak M, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269
Chandrasekhara C, Mohannath G, Blevins T, Pontvianne F, Pikaard CS (2016) Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev 30(2):177. doi:10.1101/gad.273755.115
Grob S, Schmid MW, Luedtke NW, Wicker T, Grossniklaus U (2013) Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 14:R129
Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505
Mitchell JA, Fraser P (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 22:20–25
Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LA (2009) Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5:e1000638
Del Prete S, Arpon J, Sakai K, Andrey P, Gaudin V (2014) Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 143:28–50. doi:10.1159/000363724
Probst AV, Mittelsten Scheid O (2015) Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol 27:8–16. doi:10.1016/j.pbi.2015.05.011
van Zanten M, Tessadori F, McLoughlin F, Smith R, Millenaar FF, van Driel R, Voesenek LACJ, Peeters A, Fransz PF (2010) Photoreceptors CRYTOCHROME 2 and Phytochrome B control chromatin compaction in Arabidopsis thaliana. Plant Physiol 154(4):1686
Grob S, Cavalli G (2017) Technical review: a Hitchhiker’s guide to chromosome conformation capture. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_14
Schubert V (2014) RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 143:69–77. doi:10.1159/000365233
Roudier F, Teixeira FK, Colot V (2009) Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet 25:511–517. doi:10.1016/j.tig.2009.09.013
Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N, Pendle A, Kato N, Shaw P, Dean C (2013) Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev 27:1845–1850. doi:10.1101/gad.221713.113
Crevillen P, Sonmez C, Wu Z, Dean C (2013) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32(1):140. doi:10.1038/emboj.2012.324
Feng CM, Qiu Y, Van Buskirk EK, Yang EJ, Chen M (2014) Light-regulated gene repositioning in Arabidopsis. Nat Commun 5:3027. doi:10.1038/ncomms4027
Smith S, Galinha C, Desset S, Tolmie F, Evans D, Tatout C, Graumann K (2015) Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 6:471–478. doi:10.1080/19491034.2015.1126028
Amendola M, van Steensel B (2014) Mechanisms and dynamics of nuclear lamina–genome interactions. Curr Opin Cell Biol 28(6):61–68. doi:10.1016/j.ceb.2014.03.003
Poulet A, Probst AV, Graumann K, Tatout C, Evans D (2017) Exploring the evolution of the proteins of the plant nuclear envelope. Nucleus 28:1–46. doi:10.1080/19491034.2016.1236166
Andersen JS, Lam YW, Leung AKL, Ong S-E, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83. doi:10.1038/nature03207
Carpentier M-C, Picart-Picolo A, Pontvianne F (2017) A method to identify nucleolus-associated chromatin domains (NADs). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_7
Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3:740. doi:10.1038/ncomms1732
Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59. doi:10.1186/gb-2013-14-6-r59
Sequeira-Mendes J, Gutierrez C (2016) Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 125:455–469. doi:10.1007/s00412-015-0538-5
Acknowledgments
The authors thank Chris Bowler for constant support, Vincent Colot (IBENS, Paris France) and François Roudier (ENS, Lyon France) for helpful discussions and sharing unpublished data. They are also grateful to Damarys Loew (Curie Institute, Paris France) and Julie Law (Salk Institute for Biological Studies, San Diego USA) for helpful discussions. Work by the authors is supported by the CNRS, ANR-11-JSV2-003-01, Investissements d’Avenir Labex MEMOLIFE ANR-10-LABX-54 to FB, by PSL Research University to FB and CB, and by Université Paris-Saclay to MB.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Bourbousse, C., Benhamed, M., Barneche, F. (2018). Profiling Developmentally and Environmentally Controlled Chromatin Reprogramming. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7318-7_1
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7317-0
Online ISBN: 978-1-4939-7318-7
eBook Packages: Springer Protocols