Skip to main content

Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Covalent histone modifications and their effects on chromatin state and accessibility play a key role in the regulation of gene expression in eukaryotes. To gain insights into their functions during plant growth and development, the distribution of histone modifications can be analyzed at a genome-wide scale through chromatin immunoprecipitation assays followed by sequencing of the isolated genomic DNA. Here, we present a protocol for systematic analysis of the distribution and dynamic changes of selected histone modifications, during flower development in the model plant Arabidopsis thaliana. This protocol utilizes a previously established floral induction system to synchronize flower development, which allows the collection of sufficient plant material for analysis by genomic technologies. In this chapter, we describe how to use this system to study, from the same set of samples, chromatin and transcriptome dynamics during early stages of flower formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2(8):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA 1 and interacting genes. Development 119:721–721

    CAS  Google Scholar 

  4. Ó’Maoiléidigh DS, Thomson B, Raganelli A, Wuest SE, Ryan PT, Kwaśniewska K, Carles CC, Graciet E, Wellmer F (2015) Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations. Plant J 83:344–358

    Article  PubMed  Google Scholar 

  5. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup 1000 GPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  7. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein LD (2013) Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief Bioinform 14:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  CAS  PubMed  Google Scholar 

  14. Carles CC, Fletcher JC (2009) The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 23:2723–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  16. Rothbart SB, Dickson BM, Raab JR, Grzybowski AT, Krajewski K, Guo AH, Shanle EK, Josefowicz SZ, Fuchs SM, Allis CD, Magnuson TR, Ruthenburg AJ, Strahl BD (2015) An interactive database for the assessment of histone antibody specificity. Mol Cell 59(3):502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sacha Preuss, Craig Pikkard, Kerstin Kaufmann, David Pose Padilla, and Markus Schmid whose ChIP protocols inspired the one described in this chapter. We further thank Laurent Journot and the team of the mgx sequencing platform in Montpellier for discussion on multiplexing procedures and for performing flexible library preparations and sequencing runs. We thank Laura Gregoire for input on visualization possibilities of multiple data sets. The work leading to this protocol was funded by the French National Agency Young Researcher grant for the ChromFlow project (ANR JCJC, project SVSE2-1206 01 to CCC), the Centre National de la Recherche Scientifique for a CNRS-Higher Education Chair (position 0428–64 to CCC), the Université Grenoble Alpes for an UGA-UJF Initiative Chair (to CCC), and a Marie Curie Intra-European Fellowship within the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 327377 (to JE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristel C. Carles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Engelhorn, J., Wellmer, F., Carles, C.C. (2018). Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics