Skip to main content

Advances in Agrobacterium-mediated Maize Transformation

  • Protocol
  • First Online:
Maize

Abstract

One of the major limitations of maize transformation is the isolation of a large number of immature embryos using the time-consuming manual extraction method. In this article, we describe a novel bulk embryo extraction method for fast isolation of a large number of embryos suitable for both biolistic- and Agrobacterium-mediated transformation. Optimal gene delivery and tissue culture conditions are also described for achieving high efficiency in Agrobacterium-mediated maize transformation using phosphomannose isomerase (PMI) as a selectable marker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5. doi:10.3389/fpls.2014.00379

  2. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621

    Article  CAS  PubMed  Google Scholar 

  3. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  CAS  PubMed  Google Scholar 

  4. Jones TL (2009) Maize tissue culture and transformation: the first 20 years. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, Heidelberg, pp 6–26

    Google Scholar 

  5. Wang K, Frame B, Ishida Y, Komari T (2009) Maize transformation. In: Bennetzen JL, Hake S (eds) Handbook of maize: genetics and genomics. Springer, New York, pp 609–639

    Chapter  Google Scholar 

  6. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  7. Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 7:849–858

    PubMed  Google Scholar 

  8. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    Article  CAS  PubMed  Google Scholar 

  9. Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  10. Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D et al (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  11. Li X, Sandy L, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM et al (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ et al (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  CAS  PubMed  Google Scholar 

  14. Frame BR, Paque T, Wang K (2006) Maize (Zea mays L.) In: Wang K (ed) Agrobacterium protocols, Methods in molecular biology, vol 343, vol 1, 2nd edn. Humana Press, Totowa, NJ, pp 185–199

    Chapter  Google Scholar 

  15. Lai F-M, Privalle L, Mei K, Ghoshal D, Shen Y, Klucinec J et al (2011) Evaluation of the E. coli D-serine ammonia lyase gene (Ec. dsdA) for use as a selectable marker in maize transformation. In Vitro Cell Dev Biol Plant 47:467–479

    Article  CAS  Google Scholar 

  16. Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III, Jones TJ, Zhao Z-Y (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  PubMed  Google Scholar 

  17. Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q (2015) Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 24:1017–1027

    Article  CAS  PubMed  Google Scholar 

  18. Ye X, Williams EJ, Shen J, Johnson S, Lowe B, Radke S, Strickland S, Esser JA, Petersen MW, Gilbertson LA (2011) Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res 20:773–786

    Article  CAS  PubMed  Google Scholar 

  19. Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org Cult 83:187–200

    Article  Google Scholar 

  20. Zhang Y, Yin X, Yang A, Li G, Zhang J (2005) Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22

    Article  CAS  Google Scholar 

  21. Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  CAS  PubMed  Google Scholar 

  22. Ombori O, Muoma JVO, Machuka J (2013) Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tiss Org Cult 113:11–23

    Article  CAS  Google Scholar 

  23. Valdez-Ortiz A, Merdina-Godoy S, Valverde ME, Paredes-Lo’pez O (2007) A transgenic tropical maize line generated by the direct transformation of the embryo-scutellum by A. tumefaciens. Plant Cell Tiss Org Cult 91:201–214

    Article  Google Scholar 

  24. Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K et al (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166

    Article  CAS  PubMed  Google Scholar 

  25. Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. In: Wang K (ed) Methods in molecular biology. Agrobacterium protocols, vol 343, vol 1, 2nd edn. Humana, Totowa, NJ, pp 15–41

    Google Scholar 

  26. Zhi L, TeRonde S, Meyer S, Arling ML, Register JC III, Zhao Z-Y, Jones TJ, Anand A (2015) Effect of Agrobacterium strain and plasmid copy nuber on transfromation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep 34:745–754

    Article  CAS  PubMed  Google Scholar 

  27. Imayama T, Hiei Y, Ishida Y (2016) Agrobacterium bacterium to be used in plant transformation method. United States Patent Application Publication US20160083737

    Google Scholar 

  28. Yu G, Liu Y, Du W, Song J, Lin M, Xu L, Xiao F, Liu Y (2013) Optimization of Agrobacterium tumefaciens-mediated immature embryo transformation system and transformation of glyphosate-resistant gene 2mG2-EPSPS in maize (Zea mays L.) J Integr Agric 12:2134–2142

    Article  Google Scholar 

  29. Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 87:233–243

    Article  Google Scholar 

  30. Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20:57–66

    Article  CAS  Google Scholar 

  31. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B et al (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Physiol. doi:10.1105/tpc.16.00124

  32. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim S-G, Kim S-T, Cho S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. doi:10.1038/ncomms12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E et al (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251

    Article  CAS  PubMed  Google Scholar 

  35. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank colleagues Drs. Yoshimi Barron, Larry Zeph, Rene Quadt in reviewing the manuscript and giving valuable suggestions.

Competing Interests Statements: The authors are employed by Syngenta Crop Protection, LLC, a developer of transgenic trait products and relevant transformation technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiudeng Que .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhong, H. et al. (2018). Advances in Agrobacterium-mediated Maize Transformation. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7315-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7314-9

  • Online ISBN: 978-1-4939-7315-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics