Skip to main content

Ribosome Profiling in Maize

  • Protocol
  • First Online:
Maize

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1676))

Abstract

Ribosome profiling (also known as Ribo-seq) provides a genome-wide, high-resolution, and quantitative accounting of mRNA segments that are occupied by ribosomes in vivo. The method has been used to address numerous questions in bacteria, yeast, and metazoa, but its application to questions in plant biology is just beginning. This chapter provides a detailed protocol for profiling ribosomes in plant leaf tissue. The method was developed and optimized with maize, but it has been used successfully with Arabidopsis and tobacco as well. The method captures ribosome footprints from the chloroplast and cytosol in the same preparation, but it is not optimal for detecting the footprints of mitochondrial ribosomes. The protocol is robust and simpler than many of the methods reported previously for ribosome profiling in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. doi:10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. doi:10.1038/nrg3645

    Article  CAS  PubMed  Google Scholar 

  3. Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664. doi:10.1038/nrm4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buskirk AR, Green R (2017) Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 372(1716). doi:10.1098/rstb.2016.0183

  5. Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212. doi:10.1073/pnas.1317811111

    Article  CAS  PubMed  Google Scholar 

  6. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9(6):1282–1291. doi:10.1038/nprot.2014.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reynoso MA, Juntawong P, Lancia M, Blanco FA, Bailey-Serres J, Zanetti ME (2015) Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 1284:185–207. doi:10.1007/978-1-4939-2444-8_9

    Article  CAS  PubMed  Google Scholar 

  8. Zoschke R, Watkins KP, Barkan A (2013) A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25(6):2265–2275. doi:10.1105/tpc.113.111567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chotewutmontri P, Barkan A (2016) Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet 12(7):e1006106. doi:10.1371/journal.pgen.1006106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH (2013) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25(10):3699–3710. doi:10.1105/tpc.113.114769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163(3):684–697. doi:10.1016/j.cell.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  12. Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, Li X, Zeng B, Peng L, Hauck A, Zhao H, Song W, Fan Z, Lai J (2015) Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J 84(6):1206–1218. doi:10.1111/tpj.13073

    Article  CAS  PubMed  Google Scholar 

  13. Lukoszek R, Feist P, Ignatova Z (2016) Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq. BMC Plant Biol 16(1):221. doi:10.1186/s12870-016-0915-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hsu PY, Calviello L, Wu HL, Li FW, Rothfels CJ, Ohler U, Benfey PN (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1614788113

  15. Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 3:e01257. doi:10.7554/eLife.01257

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwon KC, Chan HT, Leon IR, Williams-Carrier R, Barkan A, Daniell H (2016) Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol 172(1):62–77. doi:10.1104/pp.16.00981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141. doi:10.1093/nar/gkr693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. doi:10.14806/ej.17.1.200

    Article  Google Scholar 

  19. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, Goldman N, Hubbard TJ, Harrow J, Guigo R, Bertone P (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10(12):1185–1191. doi:10.1038/nmeth.2722

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi:10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michel AM, Mullan JP, Velayudhan V, O’Connor PB, Donohue CA, Baranov PV (2016) RiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol 13(3):316–319. doi:10.1080/15476286.2016.1141862

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dunn JG, Weissman JS (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17(1):958. doi:10.1186/s12864-016-3278-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. doi:10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32(Database issue):D393–D397. doi:10.1093/nar/gkh011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, Lundberg AE, Bartlett PF, Wray NR, Zhao QY (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One 9(8):e103207. doi:10.1371/journal.pone.0103207

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xiao Z, Zou Q, Liu Y, Yang X (2016) Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 7:11194. doi:10.1038/ncomms11194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Roz Williams-Carrier (University of Oregon) for helpful input during development of this procedure, and Indrajit Kumar (Danforth Center) for helpful discussions on data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Barkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chotewutmontri, P., Stiffler, N., Watkins, K.P., Barkan, A. (2018). Ribosome Profiling in Maize. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7315-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7314-9

  • Online ISBN: 978-1-4939-7315-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics