Abstract
Ribosome profiling (also known as Ribo-seq) provides a genome-wide, high-resolution, and quantitative accounting of mRNA segments that are occupied by ribosomes in vivo. The method has been used to address numerous questions in bacteria, yeast, and metazoa, but its application to questions in plant biology is just beginning. This chapter provides a detailed protocol for profiling ribosomes in plant leaf tissue. The method was developed and optimized with maize, but it has been used successfully with Arabidopsis and tobacco as well. The method captures ribosome footprints from the chloroplast and cytosol in the same preparation, but it is not optimal for detecting the footprints of mitochondrial ribosomes. The protocol is robust and simpler than many of the methods reported previously for ribosome profiling in plants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. doi:10.1126/science.1168978
Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. doi:10.1038/nrg3645
Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664. doi:10.1038/nrm4069
Buskirk AR, Green R (2017) Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 372(1716). doi:10.1098/rstb.2016.0183
Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212. doi:10.1073/pnas.1317811111
Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9(6):1282–1291. doi:10.1038/nprot.2014.085
Reynoso MA, Juntawong P, Lancia M, Blanco FA, Bailey-Serres J, Zanetti ME (2015) Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 1284:185–207. doi:10.1007/978-1-4939-2444-8_9
Zoschke R, Watkins KP, Barkan A (2013) A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25(6):2265–2275. doi:10.1105/tpc.113.111567
Chotewutmontri P, Barkan A (2016) Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet 12(7):e1006106. doi:10.1371/journal.pgen.1006106
Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH (2013) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25(10):3699–3710. doi:10.1105/tpc.113.114769
Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163(3):684–697. doi:10.1016/j.cell.2015.09.036
Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, Li X, Zeng B, Peng L, Hauck A, Zhao H, Song W, Fan Z, Lai J (2015) Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J 84(6):1206–1218. doi:10.1111/tpj.13073
Lukoszek R, Feist P, Ignatova Z (2016) Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq. BMC Plant Biol 16(1):221. doi:10.1186/s12870-016-0915-0
Hsu PY, Calviello L, Wu HL, Li FW, Rothfels CJ, Ohler U, Benfey PN (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1614788113
Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 3:e01257. doi:10.7554/eLife.01257
Kwon KC, Chan HT, Leon IR, Williams-Carrier R, Barkan A, Daniell H (2016) Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol 172(1):62–77. doi:10.1104/pp.16.00981
Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141. doi:10.1093/nar/gkr693
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. doi:10.14806/ej.17.1.200
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. doi:10.1038/nmeth.1923
Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, Goldman N, Hubbard TJ, Harrow J, Guigo R, Bertone P (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10(12):1185–1191. doi:10.1038/nmeth.2722
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi:10.1038/nbt.1754
Michel AM, Mullan JP, Velayudhan V, O’Connor PB, Donohue CA, Baranov PV (2016) RiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol 13(3):316–319. doi:10.1080/15476286.2016.1141862
Dunn JG, Weissman JS (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17(1):958. doi:10.1186/s12864-016-3278-x
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. doi:10.1093/bioinformatics/btt656
Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32(Database issue):D393–D397. doi:10.1093/nar/gkh011
Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, Lundberg AE, Bartlett PF, Wray NR, Zhao QY (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One 9(8):e103207. doi:10.1371/journal.pone.0103207
Xiao Z, Zou Q, Liu Y, Yang X (2016) Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 7:11194. doi:10.1038/ncomms11194
Acknowledgments
We are grateful to Roz Williams-Carrier (University of Oregon) for helpful input during development of this procedure, and Indrajit Kumar (Danforth Center) for helpful discussions on data analysis.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Chotewutmontri, P., Stiffler, N., Watkins, K.P., Barkan, A. (2018). Ribosome Profiling in Maize. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_10
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7315-6_10
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7314-9
Online ISBN: 978-1-4939-7315-6
eBook Packages: Springer Protocols