Advertisement

Production of Full-Length Antibody by Pichia pastoris

  • Adam Nylen
  • Ming-Tang ChenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1674)

Abstract

The methylotrophic yeast Pichia pastoris has become an increasingly popular host for recombinant protein expression in recent times. MRL pioneered a glycoengineered humanized P. pastoris expression system that could produce glycoproteins with glycosylation profiles similar to mammalian systems. Therapeutic glycoproteins produced by the humanized P. pastoris platform have shown comparable folding, stability, and in vitro and in vivo efficacies in preclinical models to their counterparts produced from the CHO cells. P. pastoris offers a cost and time efficient alternative platform for therapeutic protein production. This chapter describes a protocol for using P. pastoris to produce full-length monoclonal antibodies. It covers a broad spectrum of antibody expression technologies in P. pastoris, including expression vector construction, yeast transformation, high-throughput strain selection, fermentation, and antibody purification.

Key words

Pichia pastoris Monoclonal antibody High-throughput screening Fermentation Purification 

References

  1. 1.
    Grohs BM, Niu Y, Veldhuis LJ, Trabelsi S, Garabagi F, Hassell JA, McLean MD, Hall JC (2011) J Agric Food Chem 58:10056–10063CrossRefGoogle Scholar
  2. 2.
    Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL (2010) PLoS One 6:e17541CrossRefGoogle Scholar
  3. 3.
    Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Nat Biotechnol 24:210–215CrossRefPubMedGoogle Scholar
  4. 4.
    Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, Wilks K, Kudrow D, Kroll R, Kohrman B, Bargar R, Hirman J, Smith J (2014) Lancet Neurol 13:1100–1107CrossRefPubMedGoogle Scholar
  5. 5.
    Kuroda K, Kobayashi K, Kitagawa Y, Nakagawa T, Tsumura H, Komeda T, Shinmi D, Mori E, Motoki K, Fuju K, Sakai T, Nonaka K, Suzuki T, Ichikawa K, Chiba Y, Jigami Y (2008) Appl Environ Microbiol 74:446–453CrossRefPubMedGoogle Scholar
  6. 6.
    Nett JH, Cook WJ, Chen MT, Davidson RC, Bobrowicz P, Kett W, Brevnova E, Potgieter TI, Mellon MT, Prinz B, Choi BK, Zha D, Burnina I, Bukowski JT, Du M, Wildt S, Hamilton SR (2013) PLoS One 8:e68325CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen M, Choi B, Davidson R (2013) In: United States Patent Application US 2015/0337274 A1Google Scholar
  8. 8.
    Zhang N, Liu L, Dumitru CD, Cummings NR, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, Mallem MR, Ou Y, Patel RN, Vo K, Wang H, Burnina I, Choi BK, Huber HE, Stadheim TA, Zha D (2011) Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs 3:289–298CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Orchard M, Neuss J, Galley C, Carr A, Porter D, Smith P, Scopes D, Haydon D, Vousden K, Stubberfield C, Young K, Page M (2004) Bioorg Med Chem Lett 14:3975–3978CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang Y, Li F, Button M, Cukan M, Moore R, Sharkey N, Li H (2011) Protein Expr Purif 74:9–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Biologics Discovery, MRLBostonUSA

Personalised recommendations