Quorum Sensing pp 107-116 | Cite as

Rapid Electrochemical Detection of Pseudomonas aeruginosa Signaling Molecules by Boron-Doped Diamond Electrode

  • Alyah Buzid
  • John H. T. Luong
  • F. Jerry Reen
  • Fergal O’Gara
  • Jeremy D. Glennon
  • Gerard P. McGlacken
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)


As the leading cause of morbidity and mortality of cystic fibrosis (CF) patients, early detection of Pseudomonas aeruginosa (PA) is critical in the clinical management of this pathogen. Herein, we describe rapid and sensitive electroanalytical methods using differential pulse voltammetry (DPV) at a boron-doped diamond (BDD) electrode for the detection of PA signaling biomolecules. Monitoring the production of key signaling molecules in bacterial cultures of P. aeruginosa PA14 over 8 h is described, involving sample pretreatment by liquid-liquid and solid-phase extraction. In addition, direct electrochemical detection approach of PA signaling molecules is also reported in conjunction with hexadecyltrimethylammonium bromide (CTAB) to disrupt the bacterial membrane.

Key words

Pseudomonas aeruginosa Signaling molecules Cystic fibrosis Electrochemical detection Extraction Cationic surfactants Boron-doped diamond electrode 



This research was financially supported by SFI/EI Technology Innovation Development Award (TIDA) (SFI/12/TIDA/B2405). FOG acknowledges the grants awarded by the European Commission (FP7-PEOPLE-2013-ITN, 607786; FP7-KBBE-2012-6, CP-TP-312184; FP7-KBBE-2012-6, 311975; OCEAN 2011-2, 287589; Marie Curie 256596; EU-634486), Science Foundation Ireland (SSPC-2, 12/RC/2275; 13/TIDA/B2625; 12/TIDA/B2411; 12/TIDA/B2405; 14/TIDA/2438; 15/TIDA/2977), the Department of Agriculture and Food (FIRM/RSF/CoFoRD; FIRM 08/RDC/629; FIRM 1/F009/MabS; FIRM 13/F/516), the Irish Research Council for Science, Engineering and Technology (PD/2011/2414; GOIPG/2014/647), the Health Research Board/Irish Thoracic Society (MRCG-2014-6), the Marine Institute (Beaufort award C2CRA 2007/082), and Teagasc (Walsh Fellowship 2013). JDG thanks the Science Foundation Ireland (08/SRC/B1412) for research funding of the Irish Separation Science Cluster (ISSC) under the Strategic Research Cluster Programme. GPM acknowledges supports by the Science Foundation Ireland (SFI/12/IP/1315, SFI/09/RFP/CHS2353, and SSPC2 12/RC/2275), the Irish Research Council (GOIPG/2013/336), and UCC for a Strategic Research Fund Ph.D. Studentship.


  1. 1.
    Lepine F, Deziel E, Milot S, Rahme LG (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622:36–41CrossRefPubMedGoogle Scholar
  2. 2.
    Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP et al (2011) The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol 77:413–428CrossRefPubMedGoogle Scholar
  3. 3.
    Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574PubMedPubMedCentralGoogle Scholar
  4. 4.
    Haussler S, Becker T (2008) The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4(9):e1000166CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Daly M, Power E, Bjorkroth J, Sheehan P, O'Connell A, Colgan M et al (1999) Molecular analysis of Pseudomonas aeruginosa: epidemiological investigation of mastitis outbreaks in Irish dairy herds. Appl Env Microbiol 65:2723–2729Google Scholar
  6. 6.
    Quinn PJ, Markey BK, Leonard F, FitzPatrick E, Fanning S (2015) Concise review of veterinary microbiology, 2nd edn. Wiley, BlackwellGoogle Scholar
  7. 7.
    Scaccabarozzi L, Leoni L, Ballarini A, Barberio A, Locatelli C, Casula A et al (2015) Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PLoS One 10(11):e0142973CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lupp C, Ruby EG (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 187:3620–3629CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130CrossRefPubMedGoogle Scholar
  10. 10.
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG et al (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zendah I, Shaaban KA, Helmke E, Maier A, Fiebig HH, Laatsch H (2012) Barakacin: a thiazolyl-indole alkaloid isolated from a ruminal Pseudomonas sp. Z Naturforsch B 67:417–420CrossRefGoogle Scholar
  13. 13.
    Deschaght P, Van Daele S, De Baets F, Vaneechoutte M (2011) PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. a literature review. J Cyst Fibros 10:293–297CrossRefPubMedGoogle Scholar
  14. 14.
    Buzid A, Shang F, Reen FJ, Muimhneachain EO, Clarke SL, Zhou L et al (2016) Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci Rep-Uk 6:30001CrossRefGoogle Scholar
  15. 15.
    Buzid A, Reen FJ, Langsi VK, Ó Muimhneachain E, O'Gara F, Luong JHT et al (2017) Direct and rapid electrochemical detection of Pseudomonas aeruginosa quorum sensing signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem 4:533–541CrossRefGoogle Scholar
  16. 16.
    Buzid A, Ó Muimhneachain E, Reen FJ, Hayes PE, Pardo LM, Shang F et al (2016) Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal Bioanal Chem 408:6361–6367CrossRefPubMedGoogle Scholar
  17. 17.
    Fletcher MP, Diggle SP, Cámara M, Williams P (2007) Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2:1254–1262CrossRefPubMedGoogle Scholar
  18. 18.
    Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Alyah Buzid
    • 1
    • 2
  • John H. T. Luong
    • 1
    • 2
  • F. Jerry Reen
    • 3
  • Fergal O’Gara
    • 3
    • 4
  • Jeremy D. Glennon
    • 1
    • 2
  • Gerard P. McGlacken
    • 2
  1. 1.Innovative Chromatography GroupIrish Separation Science Cluster (ISSC)DublinIreland
  2. 2.School of Chemistry, Analytical and Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland
  3. 3.BIOMERIT Research Centre, School of MicrobiologyUniversity College CorkCorkIreland
  4. 4.Curtin Health Innovation Research Institute, School of Biomedical SciencesCurtin UniversityPerthAustralia

Personalised recommendations