Quorum Sensing pp 287-296 | Cite as

A Coculture-Based Approach for Screening Campaigns Aimed at Identifying Novel Pseudomonas aeruginosa Quorum Sensing Inhibitors

  • Giordano Rampioni
  • Giulia Giallonardi
  • Francesca D’Angelo
  • Livia Leoni
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)


Quorum sensing (QS) is recognized as a promising target for the identification of anti-virulence drugs hampering Pseudomonas aeruginosa adaptability to the host environment and pathogenicity. Consequently, a number of studies in the last decade focused on the identification of small molecules or proteins with anti-QS activity, mainly targeting the las QS system, which is based on N-3-oxododecanoyl-homoserine lactone (3OC12-HSL) as signal molecule. Different experimental approaches have been successfully used to identify QS blockers interfering with the activity/stability of the 3OC12-HSL receptor LasR, with the functionality of the 3OC12-HSL synthase LasI, or with the stability/bioavailability of the 3OC12-HSL signal molecule itself.

Here we describe the use of a high-throughput screening system for the identification of novel las QS inhibitors based on the cocultivation of P. aeruginosa wild type and the P. aeruginosa-derived biosensor strain PA14-R3, in which light emission relies on the ability of the wild type strain to synthesize 3OC12-HSL and of the biosensor strain to perceive this signal molecule. With respect to other screening systems, this method has the advantage of being cost-effective and allowing the identification of compounds targeting, besides 3OC12-HSL reception, any cellular process critical for the functionality of the las QS system, including 3OC12-HSL synthesis and secretion.

Key words

Quorum sensing inhibitors Screening Whole-cell biosensors Anti-virulence drugs Niclosamide Pseudomonas aeruginosa lasR lasI 



This work was supported by the Italian Ministry for University and Research (RBFR10LHD1 to G.R.), and by the Italian Cystic Fibrosis Research Foundation (FFC 10/2013 to L.L.).

We wish to thanks all the colleagues contributing to the development of PA14-R3 and to its application in screening campaigns: Francesco Imperi, Francesco Massai, Francesca Longo, Cejoice Ramachandran Pillai, Elisabetta Zennaro, and Paolo Visca.


  1. 1.
    O’Connell KM, Hodgkinson JT, Sore HF, Welch M, Salmond GP, Spring DR (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed Engl 52:10706–10733CrossRefPubMedGoogle Scholar
  2. 2.
    Chang HH, Cohen T, Grad YH, Hanage WP, O’Brien TF, Lipsitch M (2015) Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev 79:101–116CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128CrossRefPubMedGoogle Scholar
  5. 5.
    Maura D, Ballok AE, Rahme LG (2016) Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 33:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1:201–210CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426CrossRefPubMedGoogle Scholar
  8. 8.
    Rosenthal VD, Bijie H, Maki DG, Mehta Y, Apisarnthanarak A, Medeiros EA, INICC members et al (2012) International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009. Am J Infect Control 40:396–407CrossRefPubMedGoogle Scholar
  9. 9.
    Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S et al (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191CrossRefPubMedGoogle Scholar
  11. 11.
    Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81CrossRefPubMedGoogle Scholar
  12. 12.
    Winstanley C, Fothergill JL (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9CrossRefPubMedGoogle Scholar
  13. 13.
    Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M (2010) Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 12:e11CrossRefPubMedGoogle Scholar
  14. 14.
    LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rampioni G, Leoni L, Williams P (2014) The art of antibacterial warfare: deception through interference with quorum sensing-mediated communication. Bioorg Chem 55:60–68CrossRefPubMedGoogle Scholar
  16. 16.
    Massai F, Imperi F, Quattrucci S, Zennaro E, Visca P, Leoni L (2011) A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. Biosens Bioelectron 26:3444–3449CrossRefPubMedGoogle Scholar
  17. 17.
    Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G et al (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902CrossRefPubMedGoogle Scholar
  19. 19.
    Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368CrossRefPubMedGoogle Scholar
  20. 20.
    Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rada B, Leto TL (2013) Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21:73–81CrossRefPubMedGoogle Scholar
  22. 22.
    Jayaseelan S, Ramaswamy D, Dharmaraj S (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30:1159–1168CrossRefPubMedGoogle Scholar
  23. 23.
    Ohman DE, Burns RP, Iglewski BH (1980) Corneal infections in mice with toxin A and elastase mutants of Pseudomonas aeruginosa. J Infect Dis 142:547–555CrossRefPubMedGoogle Scholar
  24. 24.
    Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Giordano Rampioni
    • 1
  • Giulia Giallonardi
    • 1
  • Francesca D’Angelo
    • 1
  • Livia Leoni
    • 1
  1. 1.Department of ScienceUniversity Roma TreRomeItaly

Personalised recommendations