Advertisement

Quorum Sensing pp 227-241 | Cite as

Animal Models for Pseudomonas aeruginosa Quorum Sensing Studies

  • Damien Maura
  • Arunava Bandyopadhaya
  • Laurence G. Rahme
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)

Abstract

Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. Therefore, it is important to obtain knowledge about QS modes of action and to test putative therapeutics that may interrupt QS actions in the context of infections. This chapter describes methods to study bacterial pathogenesis in murine acute and persistent/relapsing infection models, using the Gram-negative bacterial pathogen Pseudomonas aeruginosa as an example. These infection models can be used to probe bacterial virulence functions and in mechanistic studies, as well as for the assessment of the therapeutic potential of antibacterials, including anti-virulence agents.

Key words

Lung infection Abdominal burn infection Open wound infection Back burn infection Antibiotic tolerance Persistence Pseudomonas aeruginosa 

References

  1. 1.
    Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173CrossRefPubMedGoogle Scholar
  2. 2.
    Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344CrossRefPubMedGoogle Scholar
  3. 3.
    Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV Jr (1996) Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109:1019–1029CrossRefPubMedGoogle Scholar
  5. 5.
    Pier GB, Ramphal R (2004) Pseudomonas aeruginosa. In: Mandell GL, Bennet JE, Dolin R (eds) Principles and practise of infectious diseases, vol 6. Elsevier, Amsterdam, pp 2587–2615Google Scholar
  6. 6.
    Wibbenmeyer L, Danks R, Faucher L, Amelon M, Latenser B, Kealey GP et al (2006) Prospective analysis of nosocomial infection rates, antibiotic use, and patterns of resistance in a burn population. J Burn Care Res 27:152–160CrossRefPubMedGoogle Scholar
  7. 7.
    Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P et al (2014) Gram negative wound infection in hospitalised adult burn patients–systematic review and metanalysis. PLoS One 9:e95042CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lipovy B, Rihova H, Hanslianova M, Gregorova N, Suchanek I, Brychta P (2010) Prevalence and resistance of Pseudomonas aeruginosa in severely burned patients: a 10-year retrospective study. Acta Chir Plast 52:39–43PubMedGoogle Scholar
  9. 9.
    Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291CrossRefPubMedGoogle Scholar
  11. 11.
    Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014CrossRefPubMedGoogle Scholar
  12. 12.
    Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG (2016) Evidence for direct control of virulence and defense dene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep 6:34083CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274CrossRefPubMedGoogle Scholar
  15. 15.
    Maura D, Ballok AE, Rahme LG (2016) Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 33:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M et al (2016) Novel strategies for the treatment of Pseudomonas aeruginosa Infections. J Med Chem 59:5929–5969CrossRefPubMedGoogle Scholar
  17. 17.
    Papaioannou E, Utari PD, Quax WJ (2013) Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 14:19309–19340CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kukavica-Ibrulj I, Levesque RC (2008) Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 42:389–412CrossRefPubMedGoogle Scholar
  19. 19.
    Stevens EJ, Ryan CM, Friedberg JS, Barnhill RL, Yarmush ML, Tompkins RG (1994) A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil 15:232–235CrossRefPubMedGoogle Scholar
  20. 20.
    Murray CK (2007) Infections in burns. J Trauma 62:S73CrossRefPubMedGoogle Scholar
  21. 21.
    Pruitt BA Jr, McManus AT, Kim SH, Goodwin CW (1998) Burn wound infections: current status. World J Surg 22:135–145CrossRefPubMedGoogle Scholar
  22. 22.
    Coban YK (2012) Infection control in severely burned patients. World J Crit Care Med 1:94–101CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cochran A, Morris SE, Edelman LS, Saffle JR (2002) Systemic Candida infection in burn patients: a case-control study of management patterns and outcomes. Surg Infect (Larchmt) 3:367–374CrossRefGoogle Scholar
  24. 24.
    Lesic B, Lepine F, Deziel E, Zhang J, Zhang Q, Padfield K et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239CrossRefPubMedGoogle Scholar
  25. 25.
    Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J et al (2014) Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 10:e1004321CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bandyopadhaya A, Tsurumi A, Maura D, Jeffrey KL, Rahme LG (2016) A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat Microbiol 1:16174CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Que YA, Hazan R, Strobel B, Maura D, He J, Kesarwani M et al (2013) A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 8:e80140CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K et al (2009) The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298:184–192CrossRefPubMedGoogle Scholar
  29. 29.
    Earley ZM, Akhtar S, Green SJ, Naqib A, Khan O, Cannon AR et al (2015) Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS One 10:e0129996CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB et al (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43PubMedPubMedCentralGoogle Scholar
  31. 31.
    van Heeckeren AM, Schluchter MD, Xue W, Davis PB (2006) Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med 173:288–296CrossRefPubMedGoogle Scholar
  32. 32.
    Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O et al (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104CrossRefPubMedGoogle Scholar
  33. 33.
    Dufour N, Clermont O, La Combe B, Messika J, Dion S, Khanna V et al (2016) Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J Antimicrob Chemother 71:3072–3080CrossRefPubMedGoogle Scholar
  34. 34.
    Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB et al (2013) A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother 57:3601–3613CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231CrossRefPubMedGoogle Scholar
  36. 36.
    Rhoads DD, Wolcott RD, Percival SL (2008) Biofilms in wounds: management strategies. J Wound Care 17:502–508CrossRefPubMedGoogle Scholar
  37. 37.
    Bergamini TM, Lamont PM, Cheadle WG, Polk HC Jr (1984) Combined topical and systemic antibiotic prophylaxis in experimental wound infection. Am J Surg 147:753–756CrossRefPubMedGoogle Scholar
  38. 38.
    McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H (2011) The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J Antimicrob Chemother 66:693–701CrossRefPubMedGoogle Scholar
  39. 39.
    Bandyopadhaya A, Kesarwani M, Que YA, He J, Padfield K, Tompkins R et al (2012) The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests. PLoS Pathog 8:e1003024CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Damien Maura
    • 1
    • 2
    • 3
  • Arunava Bandyopadhaya
    • 1
    • 2
    • 3
  • Laurence G. Rahme
    • 1
    • 2
    • 3
  1. 1.Department of SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUSA
  3. 3.Shriners Hospitals for Children BostonBostonUSA

Personalised recommendations