Quorum Sensing pp 193-202 | Cite as

Identification of AHL- and BDSF-Controlled Proteins in Burkholderia cenocepacia by Proteomics

  • Yilei Liu
  • Gabriella Pessi
  • Katharina Riedel
  • Leo Eberl
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)

Abstract

We used comparative proteome analysis to determine the target genes of the two quorum sensing (QS) circuits in the opportunistic pathogen Burkholderia cenocepacia: the N-acyl homoserine lactone (AHL)-based CepIR system and the BDSF (Burkholderia diffusible signal factor, cis-2-dodecenoic acid)-based RpfFR system. In this book chapter, we focus on the description of the practical procedure we currently use in the laboratory to perform a sensitive GeLC-MS/MS shotgun proteomics experiment; we also briefly describe the downstream bioinformatic data analysis.

Key words

Quorum sensing Cell fractionation SDS-PAGE In-gel tryptic digestion Mass spectrometry 

Notes

Acknowledgments

We thank Christian Ahrens (Agroscope Wädenswil & Swiss Institute of Bioinformatics SIB, Switzerland) for carefully reading and commenting this book chapter. We acknowledge the Swiss National Foundation for Scientific Research for support (Project 31003A_153374 to GP and 31003A-143773 to LE).

References

  1. 1.
    Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551CrossRefPubMedGoogle Scholar
  2. 2.
    Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Res 5:F1000 Faculty Rev-1007CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sokol PA, Malott RJ, Riedel K, Eberl L (2007) Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol 2:555–563CrossRefPubMedGoogle Scholar
  5. 5.
    Conway BA, Greenberg EP (2002) Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J Bacteriol 184:1187–1191CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Boon C, Deng Y, Wang LH, He Y, JL X, Fan Y et al (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36CrossRefPubMedGoogle Scholar
  8. 8.
    Bi H, Christensen QH, Feng Y, Wang H, Cronan JE (2012) The Burkholderia cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional crotonase homologue having both dehydratase and thioesterase activities. Mol Microbiol 83:840–855CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deng Y, Schmid N, Wang C, Wang J, Pessi G, Wu D et al (2012) Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proc Natl Acad Sci U S A 109:15479–15484CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L (2013) Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Suppiger A, Aguilar C, Eberl L (2016) Evidence for the widespread production of DSF family signal molecules by members of the genus Burkholderia by the aid of novel biosensors. Environ Microbiol Rep 8:38–44CrossRefPubMedGoogle Scholar
  12. 12.
    Schmid N, Pessi G, Deng Y, Aguilar C, Carlier AL, Grunau A et al (2012) The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111. PLoS One 7:e49966CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Riedel K, Arevalo-Ferro C, Reil G, Gorg A, Lottspeich F, Eberl L (2003) Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24:740–750CrossRefPubMedGoogle Scholar
  14. 14.
    Arevalo-Ferro C, Hentzer M, Reil G, Gorg A, Kjelleberg S, Givskov M et al (2003) Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol 5:1350–1369CrossRefPubMedGoogle Scholar
  15. 15.
    Inhülsen S, Aguilar C, Schmid N, Suppiger A, Riedel K, Eberl L (2012) Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111. Microbiologyopen 1:225–242CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carlier A, Agnoli K, Pessi G, Suppiger A, Jenul C, Schmid N et al (2014) Genome sequence of Burkholderia cenocepacia H111, a cystic fibrosis airway isolate. Genome Announc 2:e00298CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH (2014) Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteomics 99:123–137CrossRefPubMedGoogle Scholar
  18. 18.
    Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Cell Biol 11:789–801CrossRefPubMedGoogle Scholar
  19. 19.
    Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM et al (2010) An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 10:1391–1400CrossRefPubMedGoogle Scholar
  20. 20.
    Koch M, Delmotte N, Ahrens CH, Omasits U, Schneider K, Danza F et al (2014) A link between arabinose utilization and oxalotrophy in Bradyrhizobium japonicum. Appl Environ Microbiol 80:2094–2101CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lardi M, Aguilar C, Pedrioli A, Omasits U, Suppiger A, Cárcamo-Oyarce G et al (2015) σ54-dependent response to nitrogen limitation and virulence in Burkholderia cenocepacia strain H111. Appl Environ Microbiol 81:4077–4089CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Omasits U, Quebatte M, Stekhoven DJ, Fortes C, Roschitzki B, Robinson MD et al (2013) Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome. Genome Res 23:1916–1927CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Römling U, Wingender J, Muller H, Tummler B (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60:1734–1738PubMedPubMedCentralGoogle Scholar
  24. 24.
    Riedel K, Carranza P, Gehrig P, Potthast F, Eberl L (2006) Towards the proteome ofBurkholderia cenocepacia H111: setting up a 2-DE reference map. Proteomics 6:207–216CrossRefPubMedGoogle Scholar
  25. 25.
    Green MR, Sambrook J (2012) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  26. 26.
    Dyballa N, Metzger S (2009) Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp. doi:10.3791/1431Google Scholar
  27. 27.
    Gonzalez-Galarza FF, Lawless C, Hubbard SJ, Fan J, Bessant C, Hermjakob H et al (2012) A critical appraisal of techniques, software packages, and standards for quantitative proteomic analysis. OMICS 16:431–442CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Qeli E, Ahrens CH (2010) PeptideClassifier for protein inference and targeted quantitative proteomics. Nat Biotechnol 28:647–650CrossRefPubMedGoogle Scholar
  30. 30.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Yilei Liu
    • 1
  • Gabriella Pessi
    • 1
  • Katharina Riedel
    • 2
  • Leo Eberl
    • 1
  1. 1.Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
  2. 2.Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations