Quorum Sensing pp 161-176 | Cite as

Enzymatic Assays to Investigate Acyl-Homoserine Lactone Autoinducer Synthases

  • Daniel Shin
  • Rajesh Nagarajan
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)


Bacteria use chemical molecules called autoinducers as votes to poll their numerical strength in a colony. This polling mechanism, commonly referred to as quorum sensing, enables bacteria to build a social network and provide a collective response for fighting off common threats. In Gram-negative bacteria, AHL synthases synthesize acyl-homoserine lactone (AHL) autoinducers to turn on the expression of several virulent genes including biofilm formation, protease secretion, and toxin production. Therefore, inhibiting AHL signal synthase would limit quorum sensing and virulence. In this chapter, we describe four enzymatic methods that could be adopted to investigate a broad array of AHL synthases. The enzymatic assays described here should accelerate our mechanistic understanding of quorum-sensing signal synthesis that could pave the way for discovery of potent antivirulence compounds.

Key words

Quorum sensing N-acyl-homoserine lactone AHL synthase S-adenosyl-L-methionine 5′-Deoxy-5′-(methylthio)adenosine Acyl carrier protein Coenzyme A Methylthioadenosine nucleosidase Xanthine oxidase HPLC assay Colorimetric assay Spectrophotometric assay 


  1. 1.
    Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246CrossRefPubMedGoogle Scholar
  2. 2.
    Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorumcontrolled genes: a transcriptome analysis. J Bacteriol 185:2066–2079CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulatory role of EsaR, a quorum sensing regulator in Pantoea stewartii spp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635CrossRefPubMedGoogle Scholar
  4. 4.
    De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chang Y-C, Krishnan T, Wang H, Chen Y, Yin W-F, Chong Y-M et al (2014) Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthases as druggable target. Sci Rep 4:7245CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shin D, Frane ND, Brecht RM, Keeler J, Nagarajan R (2015) A comparative analysis of acyl-homoserine lactone synthase assays. ChemBioChem 16:2651–2659CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Val DL, Cronan JE Jr (1998) In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol 180:2644–2651PubMedPubMedCentralGoogle Scholar
  8. 8.
    Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96:4360–4365CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH, Kessler A et al (2011) Isovaleryl-homoserine lactone, an unusual branched-chain quorum sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 108:16765–16770CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Christensen QH, Brecht RM, Dudekula D, Greenberg EP, Nagarajan R (2014) Evolution of acyl-substrate recognition by a family of acylhomoserine lactone synthases. PLoS One 9:e112464CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Montebello AN, Brecht RM, Turner RD, Ghali M, Pu X, Nagarajan R (2014) Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acylhomoserine lactone synthase. Biochemistry 53:6231–6242CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gould TA, Schweizer HP, Churchill MEA (2002) Structure of the Pseudomonas aeruginosa acyl-homoserine lactone synthase LasI. Mol Microbiol 53:1135–1146CrossRefGoogle Scholar
  13. 13.
    Gamage AM, Shui G, Wenk MR, Chua KL (2011) N-octanoylhomoserine lactone signaling mediated by BpsI-BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology 157:1176–1186CrossRefPubMedGoogle Scholar
  14. 14.
    Watson WT, Minogue TD, Val DL, Bodman SB, Churchill MEA (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694CrossRefPubMedGoogle Scholar
  15. 15.
    Duerkop BA, Herman JP, Ulrich RL, Churchill MEA, Greenberg EP (2008) The Burkholderia mallei BmaR3-BmaI3 quorum sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J Bacteriol 190:5137–5141CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Raychaudhari A, Jerga A, Tipton PA (2005) Chemical mechanism and substrate specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas aeruginosa. Biochemistry 44:2974–2981CrossRefGoogle Scholar
  17. 17.
    Stadman ER (1957) Preparation and assay of acyl coenzymeA and other thiol esters: use of hydroxylamine. Methods Enzymol 3:931–946CrossRefGoogle Scholar
  18. 18.
    Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogues of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5:251–257CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptide carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595CrossRefPubMedGoogle Scholar
  20. 20.
    La Clair JJ, Foley TL, Schegg TR, Regan CM, Burkart MD (2004) Manipulations of proteins in antibiotic synthesis. Chem Biol 11:195–201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryBoise State UniversityBoiseUSA

Personalised recommendations