Advertisement

Quorum Sensing pp 131-143 | Cite as

Fluorescence Quenching Studies of γ-Butyrolactone-Binding Protein (CprB) from Streptomyces coelicolor A3(2)

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)

Abstract

Fluorescence spectroscopy is an important analytical tool which is widely employed to study biological systems. This technique can be applied to qualitatively and quantitatively probe protein-ligand interactions primarily because of its sensitivity, selectivity, nondestructive and rapid form of analysis. In this chapter we describe the utility of this technique to establish a label-free, universal screening protocol for putative γ-butyrolactone (GBL) receptors by exploiting the intrinsic fluorescence of a highly conserved tryptophan residue that constitutes the hydrophobic pocket for GBL binding, a unique feature possessed by this family of receptors. Here we demonstrate this technique using a combination of steady-state fluorescence quenching methods and fluorescence lifetime decay kinetics using CprB protein from Streptomyces coelicolor A3(2) as a model system. Interaction data between CprB and two chemically synthesized GBLs involved in quorum sensing, Cp1 and Cp2, have been used as example.

Key words

Quorum sensing γ-Butyrolactones CprB Fluorescence quenching Potassium iodide quenching Time-resolved fluorescence lifetime 

References

  1. 1.
    Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246CrossRefPubMedGoogle Scholar
  2. 2.
    Visick KL, Fuqua C (2005) Decoding microbial chatter: cell-cell communication in bacteria. J Bacteriol 187:5507–5519CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1136CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695CrossRefPubMedGoogle Scholar
  5. 5.
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294CrossRefPubMedGoogle Scholar
  7. 7.
    Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ et al (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266CrossRefPubMedGoogle Scholar
  8. 8.
    Barbieri CM, Kaul M, Pilch DS (2007) Use of 2-aminopurine as a fluorescent tool for characterizing antibiotic recognition of the bacterial rRNA A-site. Tetrahedron 63:3567–6574CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768:1862–1885CrossRefPubMedGoogle Scholar
  10. 10.
    Yengo CM, Chrin L, Rovner AS, Berger CL (1999) Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release. Biochemistry 38:14515–14523CrossRefPubMedGoogle Scholar
  11. 11.
    Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6:85–95CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wilhelmsson LM (2010) Fluorescent nucleic acid base analogues. Q Rev Biophys 43:159–183CrossRefPubMedGoogle Scholar
  14. 14.
    Kim Y, Ho SO, Gassman NR, Korlann Y, Landorf EV, Collart FR et al (2008) Efficient site-specific labeling of proteins via cysteines. Bioconjug Chem 19:786–791CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Biswas A, Narayan S, Kallianpur MV, Krishnamoorthy G, Anand R (2015) Mode of DNA binding with gamma-butyrolactone receptor protein CprB from Streptomyces coelicolor revealed by site-specific fluorescence dynamics. Biochim Biophys Acta 1850:2283–2292CrossRefPubMedGoogle Scholar
  16. 16.
    Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME et al (2001) DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Proc Natl Acad Sci U S A 98:10090–10095CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Natsume R, Ohnishi Y, Senda T, Horinouchi S (2004) Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336:409–419CrossRefPubMedGoogle Scholar
  18. 18.
    Bhukya H, Bhujbalrao R, Bitra A, Anand R (2014) Structural and functional basis of transcriptional regulation by TetR family protein CprB from S. coelicolor A3(2). Nucleic Acids Res 42:10122–10133CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Biswas A, Swarnkar RK, Hussain B, Sahoo SK, Pradeepkumar PI, Patwari GN et al (2014) Fluorescence quenching studies of gamma-butyrolactone binding protein (CprB) from Streptomyces coelicolor A3(2). J Phys Chem B 118:10035–10042CrossRefPubMedGoogle Scholar
  20. 20.
    Lackowicz JR (2006) Quenching of fluorescence. In: Principles of fluorescence spectroscopy. Springer, Boston, USACrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations