Quorum Sensing pp 117-128 | Cite as

Detection and Quantification of Butyrolactones from Streptomyces

  • Marc Biarnes-Carrera
  • Rainer Breitling
  • Eriko Takano
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)


In Streptomyces, the onset of antibiotic production and sporulation is coordinated through small diffusible molecules known as γ-butyrolactones (GBLs). These are active in very low amounts, and their extraction and characterization are challenging. Here we describe a rapid, small-scale method for the extraction of GBL from Streptomyces coelicolor, from both solid and liquid cultures, which provides sufficient material for subsequent bioassays and partial characterization. We also present two different bioassay techniques for the detection and quantification of the GBL content in the extracts: the antibiotic bioassay and the kanamycin bioassay.

Key words

Gamma-butyrolactones Antibiotic bioassay Kanamycin bioassay Small-scale gamma-butyrolactone extraction Antibiotic production regulation 


  1. 1.
    Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Biarnes-Carrera M, Breitling R, Takano E (2015) Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 28:91–98CrossRefPubMedGoogle Scholar
  3. 3.
    Kato J, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA 104:2378–2383CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Niu G, Chater KF, Tian Y, Zhang J, Tan H (2016) Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40:554–573CrossRefPubMedGoogle Scholar
  5. 5.
    Choi SU, Lee CK, Hwang YI, Kinosita H, Nihira T (2003) Gamma-butyrolactone autoregulators and receptor proteins in non-Streptomyces actinomycetes producing commercially important secondary metabolites. Arch Microbiol 180:303–307CrossRefPubMedGoogle Scholar
  6. 6.
    Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Chem Biol 9:287–294Google Scholar
  7. 7.
    Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF (2004) PI factor, a novel type quorum sensing inducer elicits primaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593CrossRefPubMedGoogle Scholar
  8. 8.
    Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H (2014) A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94:490–505CrossRefPubMedGoogle Scholar
  9. 9.
    Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor. Mol Microbiol 41:1015–1028CrossRefPubMedGoogle Scholar
  10. 10.
    Corre C, Song L, O'Rourke S, Chater KF, Challis GL (2008) 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105:17510–17515CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang J, Wang W, Wang L, Zhang G, Fan K, Tan H et al (2011) A novel role of ‘pseudo’γ-butyrolactone receptors in controlling γ-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 82:236–250CrossRefPubMedGoogle Scholar
  12. 12.
    Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJ, Yamada Y et al (2000) Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem 275:11010–11016CrossRefPubMedGoogle Scholar
  13. 13.
    Hsiao NH, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S et al (2009) Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem Biol 16:951–960CrossRefPubMedGoogle Scholar
  14. 14.
    Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111CrossRefPubMedGoogle Scholar
  15. 15.
    Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T et al (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479CrossRefPubMedGoogle Scholar
  16. 16.
    Pawlik K, Kotowska M, Chater KF, Kuczek K, Takano E (2007) A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch Microbiol 187:87–99CrossRefPubMedGoogle Scholar
  17. 17.
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich, UKGoogle Scholar
  18. 18.
    Sidda JD, Poon V, Song L, Wang W, Yang K, Corre C (2016) Overproduction and identification of butyrolactones SCB1-8 in the antibiotic production superhost Streptomyces M1152. Org Biomol Chem 14:6390–6393CrossRefPubMedGoogle Scholar
  19. 19.
    Nakano H, Takehara E, Nihira T, Yamada Y (1999) Gene replacement analysis of theStreptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180:3317–3322Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Marc Biarnes-Carrera
    • 1
  • Rainer Breitling
    • 1
  • Eriko Takano
    • 1
  1. 1.Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations