Use of Whole-Cell Bioassays for Screening Quorum Signaling, Quorum Interference, and Biofilm Dispersion

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1673)

Abstract

In most bacteria, a global level of regulation, termed quorum sensing (QS), exists involving intercellular communication via the production and response to cell density-dependent signal molecules. QS has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. N-acylated homoserine lactones (AHLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, commonly found in soil and water, produces the characteristic purple pigment violacein, regulated by AHL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of AHL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect AHL and QS inhibitors. Due to the inherent low susceptibility of biofilm bacteria to antimicrobial agents, biofilm dispersion, whereby bacteria reenter the planktonic community, is another increasingly important area of research. At least one signal, distinct from traditional QS, has been identified and there are a variety of other environmental factors that also trigger dispersion. We describe a microtiter-based experimental strategy whereby potential biofilm dispersion compounds can be screened.

Key words

Quorum sensing N-acyl homoserine lactones Violacein Chromobacterium violaceum Agrobacterium tumefaciens Biofilm dispersion 

Notes

Acknowledgements

We are grateful to Clay Fuqua and Steve Winans for providing these strains and introducing us to quorum signaling. We are also grateful to Karin Sauer for introducing us to biofilm dispersion. Work in RJCM’s laboratory is supported by grants from NASA (NNX17AC79G), the Texas State University Research Enhancement Program, and the Biology Department at Texas State University.

References

  1. 1.
    Chu W, Vattem DA, Maitin V, Barnes MB, McLean RJC (2011) Bioassay of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum. In: Rumbaugh K (ed) Quorum sensing methods and protocols. Springer, New York, NY, pp 3–19CrossRefGoogle Scholar
  2. 2.
    Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195CrossRefPubMedGoogle Scholar
  6. 6.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449CrossRefPubMedGoogle Scholar
  7. 7.
    Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751CrossRefPubMedGoogle Scholar
  8. 8.
    Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A 81:4154–4158CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362:446–448CrossRefPubMedGoogle Scholar
  11. 11.
    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711CrossRefPubMedGoogle Scholar
  12. 12.
    Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938CrossRefPubMedGoogle Scholar
  13. 13.
    Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862PubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu H, Song Z, Givskov M, Döring G, Worlitzsch D, Mathee K et al (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147:1105–1113CrossRefPubMedGoogle Scholar
  15. 15.
    Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383CrossRefPubMedGoogle Scholar
  16. 16.
    Chua SL, Yam JK, Hao P, Adav SS, Salido MM, Liu Y et al (2016) Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 7:10750CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  18. 18.
    Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277CrossRefPubMedGoogle Scholar
  19. 19.
    de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. Prog Mol Subcell Biol 42:55–86PubMedGoogle Scholar
  20. 20.
    Adonizio AL, Downum K, Bennett BC, Mathee K (2006) Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105:427–435CrossRefPubMedGoogle Scholar
  21. 21.
    Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W et al (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 9:2486–2495CrossRefPubMedGoogle Scholar
  22. 22.
    Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161CrossRefPubMedGoogle Scholar
  23. 23.
    Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L et al (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through the use of defined substrates. Science 272:1655–1658CrossRefPubMedGoogle Scholar
  25. 25.
    Makemson J, Eberhard A, Mathee K (2006) Simple electrospray mass spectrometry detection of acylhomoserine lactones. Luminescence 21:1–6CrossRefPubMedGoogle Scholar
  26. 26.
    Eberhard A, Schineller JB (2000) Chemical synthesis of bacterial autoinducers and analogs. Methods Enzymol 305:301–315CrossRefPubMedGoogle Scholar
  27. 27.
    Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M et al (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541CrossRefPubMedGoogle Scholar
  28. 28.
    Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9CrossRefPubMedGoogle Scholar
  29. 29.
    Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178:435–440CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Glansdorp FG, Thomas GL, Lee JK, Dutton JM, Salmond GPC, Welch M et al (2004) Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation. Org Biomol Chem 2:3329–3336CrossRefPubMedGoogle Scholar
  32. 32.
    Wood DW, Pierson LS (1996) The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53CrossRefPubMedGoogle Scholar
  33. 33.
    McLean RJC, Pierson LS, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360CrossRefPubMedGoogle Scholar
  34. 34.
    Fuqua WC, Winans SC (1994) A luxR-luxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405PubMedPubMedCentralGoogle Scholar
  36. 36.
    Luo ZQ, Clemente TE, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98–103CrossRefPubMedGoogle Scholar
  37. 37.
    Zan J, Cicirelli EM, Mohamed NM, Sibhatu H, Kroll S, Choi O et al (2012) A complex LuxR-LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Mol Microbiol 85:916–933CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL et al (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193:3871–3878CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Blosser RS, Gray KM (2000) Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J Microbiol Methods 40:47–55CrossRefPubMedGoogle Scholar
  41. 41.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209CrossRefPubMedGoogle Scholar
  42. 42.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang L, Givskov M (2015) Chemical biology strategies for biofilm control. Microbiol Spectr 3:MB-0019-2015CrossRefGoogle Scholar
  45. 45.
    Kim SK, Lee JH (2016) Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 54:71–85CrossRefPubMedGoogle Scholar
  46. 46.
    Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403CrossRefPubMedGoogle Scholar
  47. 47.
    Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273CrossRefPubMedGoogle Scholar
  48. 48.
    Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R et al (2014) BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog 10:e1004168CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA et al (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic diguanosine-5′-monophosphate levels and enhanced dispersal. J Bacteriol 191:7333–7342CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M et al (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282CrossRefPubMedGoogle Scholar
  51. 51.
    Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177:1367–1373CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tempe J, Petit A, Holsters M, Von Montagu M, Schell J (1977) Thermosensitive step associated with transfer of the Ti plasmid during conjugation: possible relation to transformation in crown gall. Proc Natl Acad Sci U S A 74:2848–2849CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally-occurring biofilms. FEMS Microbiol Lett 154:259–263CrossRefPubMedGoogle Scholar
  54. 54.
    Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Biofilms on indwelling urinary catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bates CL, Forstner MRJ, Barnes MB, Whiteley M, McLean RJC (2006) Identification of heterotrophic limestone-adherent biofilm isolates from the Edwards Aquifer, Texas. Southwest Nat 51:299–309CrossRefGoogle Scholar
  56. 56.
    Vattem DA, Mihalik K, Crixell SH, McLean RJC (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310CrossRefPubMedGoogle Scholar
  57. 57.
    McLean RJC, Bryant SA, Vattem DA, Givskov M, Rasmussen TB, Balaban N (2008) Detection in vitro of quorum-sensing molecules and their inhibitors. In: Balaban N (ed) The control of biofilm infections by signal manipulation. Springer, Heidelberg, pp 39–50CrossRefGoogle Scholar
  58. 58.
    McLean RJC, Barnes MB, Windham MK, Merchant MM, Forstner MRJ, Fuqua C (2005) Cell-cell influences on bacterial community development in aquatic biofilms. Appl Environ Microbiol 71:8987–8990CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    McLean RJC, Robertson SR (2016) Compositions and methods for dispersing biofilms. Provisional US Patent Application 62316952.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyTexas State UniversitySan MarcosUSA

Personalised recommendations