Skip to main content

Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Instability of repetitive DNA sequences causes numerous hereditary disorders in humans, the majority of which are associated with trinucleotide repeat expansions. Here, we describe a unique system to study instability of triplet repeats in a yeast experimental setting. Using fluctuation assay and the novel program FluCalc we are able to accurately estimate the rates of large-scale expansions, as well as repeat-mediated mutagenesis and gross chromosomal rearrangements for different repeat sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164. doi:10.1073/pnas.88.16.7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foster PL (2006) Methods for determining spontaneous mutation rates. Methods Enzymol 409:195–213. doi:10.1016/S0076-6879(05)09012-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng Q (2015) A new practical guide to the Luria–Delbrück protocol. Mutat Res 781:7–13. doi:10.1016/j.mrfmmm.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  5. Zheng Q (2016) A second look at the final number of cells in a fluctuation experiment. J Theor Biol 401:54–63. doi:10.1016/j.jtbi.2016.04.027

    Article  PubMed  Google Scholar 

  6. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940. doi:10.1038/nature05977

    Article  CAS  PubMed  Google Scholar 

  7. Kim JC, Mirkin SM (2013) The balancing act of DNA repeat expansions. Curr Opin Genet Dev 23(3):280–288. doi:10.1016/j.gde.2013.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shishkin AA, Voineagu I, Matera R et al (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35(1):82–92. doi:10.1016/j.molcel.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah KA, Shishkin AA, Voineagu I et al (2012) Role of DNA polymerases in repeat-mediated genome instability. Cell Rep 2(5):1088–1095. doi:10.1016/j.celrep.2012.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah KA, McGinty RJ, Egorova VI et al (2014) Coupling transcriptional state to large-scale repeat expansions in yeast. Cell Rep 9(5):1594–1602. doi:10.1016/j.celrep.2014.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cherng N, Shishkin AA, Schlager LI et al (2011) Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci U S A 108(7):2843–2848. doi:10.1073/pnas.1009409108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aksenova AY, Greenwell PW, Dominska M et al (2013) Genome rearrangements caused by interstitial telomeric sequences in yeast. Proc Natl Acad Sci U S A 110(49):19866–19871. doi:10.1073/pnas.1319313110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt KH, Pennaneach V, Putnam CD et al (2006) Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae. Methods Enzymol 409:462–476. doi:10.1016/S0076-6879(05)09027-0

    Article  CAS  PubMed  Google Scholar 

  14. Aksenova AY, Han G, Shishkin AA et al (2015) Expansion of interstitial telomeric sequences in yeast. Cell Rep 13(8):1545–1551. doi:10.1016/j.celrep.2015.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng Q (2002) Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biosci 176(2):237–252. doi:10.1016/S0025-5564(02)00087-1

    Article  PubMed  Google Scholar 

  16. Zheng Q (2016) rSalvador 1.5: an R tool for the Luria–Delbrück fluctuation assay. http://eeeeeric.github.io/rSalvador. Accessed 7 July 2016

    Google Scholar 

  17. Hall BM, Ma CX, Liang P et al (2009) Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25(12):1564–1565. doi:10.1093/bioinformatics/btp253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gillet-Markowska A, Louvel G, Fischer G (2015) bz-rates: a web tool to estimate mutation rates from fluctuation analysis. G3 Bethesda 5(11):2323–2327. doi:10.1534/g3.115.019836

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sarkar S, Ma WT, Sandri GH (1992) On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85(2):173–179. doi:10.1007/BF00120324

    Article  CAS  PubMed  Google Scholar 

  20. Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20(1):4–17. doi:10.1006/meth.1999.0901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Alexander A. Shishkin and Kartik A. Shah for their invaluable contributions in developing cassettes to study repeat instability, and for developing experimental protocols for the selection and PCR procedures, Timofei S. Bondarev for developing FluCalc program, and Durwood Marshall for statistical consulting. This study was funded by NIH grants GM105473 and GM60987 to S.M.M and RFBR grant #15-04-08658 and research project in the Centre for Molecular and Cell Technologies (Research Park, Saint-Petersburg State University) for A.Y.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei M. Mirkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Radchenko, E.A., McGinty, R.J., Aksenova, A.Y., Neil, A.J., Mirkin, S.M. (2018). Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics