Abstract
Instability of repetitive DNA sequences causes numerous hereditary disorders in humans, the majority of which are associated with trinucleotide repeat expansions. Here, we describe a unique system to study instability of triplet repeats in a yeast experimental setting. Using fluctuation assay and the novel program FluCalc we are able to accurately estimate the rates of large-scale expansions, as well as repeat-mediated mutagenesis and gross chromosomal rearrangements for different repeat sequences.
Similar content being viewed by others
References
Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511
Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164. doi:10.1073/pnas.88.16.7160
Foster PL (2006) Methods for determining spontaneous mutation rates. Methods Enzymol 409:195–213. doi:10.1016/S0076-6879(05)09012-9
Zheng Q (2015) A new practical guide to the Luria–Delbrück protocol. Mutat Res 781:7–13. doi:10.1016/j.mrfmmm.2015.08.005
Zheng Q (2016) A second look at the final number of cells in a fluctuation experiment. J Theor Biol 401:54–63. doi:10.1016/j.jtbi.2016.04.027
Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940. doi:10.1038/nature05977
Kim JC, Mirkin SM (2013) The balancing act of DNA repeat expansions. Curr Opin Genet Dev 23(3):280–288. doi:10.1016/j.gde.2013.04.009
Shishkin AA, Voineagu I, Matera R et al (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35(1):82–92. doi:10.1016/j.molcel.2009.06.017
Shah KA, Shishkin AA, Voineagu I et al (2012) Role of DNA polymerases in repeat-mediated genome instability. Cell Rep 2(5):1088–1095. doi:10.1016/j.celrep.2012.10.006
Shah KA, McGinty RJ, Egorova VI et al (2014) Coupling transcriptional state to large-scale repeat expansions in yeast. Cell Rep 9(5):1594–1602. doi:10.1016/j.celrep.2014.10.048
Cherng N, Shishkin AA, Schlager LI et al (2011) Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci U S A 108(7):2843–2848. doi:10.1073/pnas.1009409108
Aksenova AY, Greenwell PW, Dominska M et al (2013) Genome rearrangements caused by interstitial telomeric sequences in yeast. Proc Natl Acad Sci U S A 110(49):19866–19871. doi:10.1073/pnas.1319313110
Schmidt KH, Pennaneach V, Putnam CD et al (2006) Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae. Methods Enzymol 409:462–476. doi:10.1016/S0076-6879(05)09027-0
Aksenova AY, Han G, Shishkin AA et al (2015) Expansion of interstitial telomeric sequences in yeast. Cell Rep 13(8):1545–1551. doi:10.1016/j.celrep.2015.10.023
Zheng Q (2002) Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biosci 176(2):237–252. doi:10.1016/S0025-5564(02)00087-1
Zheng Q (2016) rSalvador 1.5: an R tool for the Luria–Delbrück fluctuation assay. http://eeeeeric.github.io/rSalvador. Accessed 7 July 2016
Hall BM, Ma CX, Liang P et al (2009) Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25(12):1564–1565. doi:10.1093/bioinformatics/btp253
Gillet-Markowska A, Louvel G, Fischer G (2015) bz-rates: a web tool to estimate mutation rates from fluctuation analysis. G3 Bethesda 5(11):2323–2327. doi:10.1534/g3.115.019836
Sarkar S, Ma WT, Sandri GH (1992) On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85(2):173–179. doi:10.1007/BF00120324
Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20(1):4–17. doi:10.1006/meth.1999.0901
Acknowledgments
We thank Alexander A. Shishkin and Kartik A. Shah for their invaluable contributions in developing cassettes to study repeat instability, and for developing experimental protocols for the selection and PCR procedures, Timofei S. Bondarev for developing FluCalc program, and Durwood Marshall for statistical consulting. This study was funded by NIH grants GM105473 and GM60987 to S.M.M and RFBR grant #15-04-08658 and research project in the Centre for Molecular and Cell Technologies (Research Park, Saint-Petersburg State University) for A.Y.A.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Radchenko, E.A., McGinty, R.J., Aksenova, A.Y., Neil, A.J., Mirkin, S.M. (2018). Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_29
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7306-4_29
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7305-7
Online ISBN: 978-1-4939-7306-4
eBook Packages: Springer Protocols

