Skip to main content

An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. ALE experiments have mainly been conducted with heterotrophic microbes to study, for instance, cell metabolism with different multicarbon substrates, tolerance to solvents, pH variation, and high temperature. Here, we describe employing an ALE method to generate Sporomusa ovata strains growing faster autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469. doi:10.1038/nrg1088

    Article  CAS  PubMed  Google Scholar 

  2. Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Factories 12:64. doi:10.1186/1475-2859-12-64

    Article  Google Scholar 

  3. Patzschke A, Steiger MG, Holz C et al (2015) Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol J 10:1719–1726. doi:10.1002/biot.201400809

    Article  CAS  PubMed  Google Scholar 

  4. Zambanini T, Sarikaya E, Kleineberg W et al (2016) Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels 9:67. doi:10.1186/s13068-016-0483-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu B, Yang Y-M, Beck DAC et al (2016) Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnol Biofuels 9:84. doi:10.1186/s13068-016-0497-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horinouchi T, Tamaoka K, Furusawa C et al (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics 11:579. doi:10.1186/1471-2164-11-579

    Article  PubMed  PubMed Central  Google Scholar 

  7. Atsumi S, Wu T-Y, Machado IMP et al (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449. doi:10.1038/msb.2010.98

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reyes LH, Almario MP, Winkler J et al (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14:579–590. doi:10.1016/j.ymben.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  9. Oide S, Gunji W, Moteki Y et al (2015) Adaptive laboratory evolution conferred cross-tolerance to thermal and solvent stress to Corynebacterium glutamicum. Appl Environ Microbiol. doi:10.1128/AEM.03973-14

  10. Tremblay P-L, Summers ZM, Glaven RH et al (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13:13–23. doi:10.1111/j.1462-2920.2010.02302.x

    Article  CAS  PubMed  Google Scholar 

  11. Tremblay P-L, Höglund D, Koza A et al (2015) Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci Rep 5:16168. doi:10.1038/srep16168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. LaCroix RA, Sandberg TE, O’Brien EJ et al (2015) Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol 81:17–30. doi:10.1128/AEM.02246-14

    Article  PubMed  Google Scholar 

  13. Möller B, Oßmer R, Howard BH et al (1984) Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396. doi:10.1007/BF00408385

    Article  Google Scholar 

  14. Poehlein A, Gottschalk G, Daniel R (2013) First insights into the genome of the Gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662. Genome Announc 1:e00734–e00713. doi:10.1128/genomeA.00734-13

    PubMed  PubMed Central  Google Scholar 

  15. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. doi:10.1196/annals.1419.016

    Article  CAS  PubMed  Google Scholar 

  16. Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103–e00110. doi:10.1128/mBio.00103-10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tremblay P-L, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6:201. doi:10.3389/fmicb.2015.00201

    PubMed  PubMed Central  Google Scholar 

  18. Chen L, Tremblay P-L, Mohanty S et al (2016) Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J Mater Chem A 4:8395–8401. doi:10.1039/C6TA02036D

    Article  CAS  Google Scholar 

  19. Aryal N, Halder A, Tremblay P-L et al (2016) Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta 217:117–122. doi:10.1016/j.electacta.2016.09.063

    Article  CAS  Google Scholar 

  20. Schrader J, Schilling M, Holtmann D et al (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115. doi:10.1016/j.tibtech.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Patterson JA, Ricke SC (2015) Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens. J Environ Sci Health B 50:62–67. doi:10.1080/03601234.2015.965639

    Article  CAS  PubMed  Google Scholar 

  22. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331. doi:10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  23. McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140. doi:10.1093/nar/gkt444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, T., Tremblay, PL. (2018). An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics