A Method for Imaging Oxygen Distribution and Respiration at a Microscopic Level of Resolution

  • Hardy RolletschekEmail author
  • Gregor Liebsch
Part of the Methods in Molecular Biology book series (MIMB, volume 1670)


Conventional oxygen (micro-) sensors assess oxygen concentration within a particular region or across a transect of tissue, but provide no information regarding its bidimensional distribution. Here, a novel imaging technology is presented, in which an optical sensor foil (i.e., the planar optode) is attached to the surface of the sample. The sensor converts a fluorescent signal into an oxygen value. Since each single image captures an entire area of the sample surface, the system is able to deduce the distribution of oxygen at a resolution level of few micrometers. It can be deployed to dynamically monitor oxygen consumption, thereby providing a detailed respiration map at close to cellular resolution. Here, we demonstrate the application of the imaging tool to developing plant seeds; the protocol is explained step by step and some potential pitfalls are discussed.

Key words

Respiration mapping Planar oxygen sensor Hypoxia Seed Optical sensor Oxygen imaging Maize kernel 



The author is grateful to H. Tschiersch (IPK-Gatersleben, Germany) for helping with the establishment of the method and for critical discussions.


  1. 1.
    Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. In: Marshall KC (ed) Advances in microbial ecology, vol 9. Springer, New York, NY, pp 293–352CrossRefGoogle Scholar
  2. 2.
    Armstrong W, Strange ME, Cringle S, Beckett PM (1994) Microelectrode and modelling study of oxygen distribution in roots. Ann Bot 74:287–299CrossRefGoogle Scholar
  3. 3.
    Rolletschek H, Stangelmayer A, Borisjuk L (2009) The methodology and significance of microsensor-based oxygen mapping in plant seeds – an overview. Sensors 9:3218–3227CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H (2014) Imaging microbial culture O2 consumption : metabolic activity of E. coli monitored inside the incubator with the VisiSens™ A1. Genet Eng Biotechnol News 34(14):30–30. doi: 10.1089/gen.34.14.15 CrossRefGoogle Scholar
  5. 5.
    Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H (2012) A visualization method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol 196:926–936CrossRefPubMedGoogle Scholar
  6. 6.
    Dutta T, Rubol S (2013). Effect of spatial heterogeneity on rate of sedimentary O2 consumption reaction. In Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet earth. Proceedings of the 15th annual conference of the international association for mathematical geosciences, Springer Verlag, pp 485–489. doi:10.1007/978–3–642-32408-6_107Google Scholar
  7. 7.
    Trollmann R, Bogdan C, Liebsch G, Wang X-D, Wolfbeis OS (2013) Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation. Methods Appl Fluoresc 1(4). doi: 10.1088/2050-6120/1/4/045002
  8. 8.
    Ochs CJ, Kasuya J, Pavesi A, Liebsch G (2014) 2D-Visualisierung des zellulären Sauerstoffverbrauchs in Mikrofluidiksystemen. BIOspektrum 20(7):773–775CrossRefGoogle Scholar
  9. 9.
    Nevares I, Crespo R, Gonzalez C, del Alamo-Sanza M (2014) Imaging of oxygen transmission in the oak wood of wine barrels using optical sensors and a colour camera. Aust J Grape Wine Res 20(3):353–360. doi: 10.1111/ajgw.12104 CrossRefGoogle Scholar
  10. 10.
    Zhu F, Baker D, Skommer J, Sewell M, Wlodkowic D (2015) Real-time 2D visualization of metabolic activities in zebrafish embryos using a microfluidic technology. Cytometry A 87(5):446–450CrossRefPubMedGoogle Scholar
  11. 11.
    Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30CrossRefPubMedGoogle Scholar
  12. 12.
    Rolletschek H (2012) Hypoxia – a phenomenon which shapes seed metabolism. (Habilitation) Naturwissenschaftliche Fakultät, Leibniz Universität Hannover. Online link:
  13. 13.
    Tschiersch H, Liebsch G, Stangelmayer A, Borisjuk L, Rolletschek H (2011) Planar oxygen sensors for non invasive imaging in experimental biology. In: Minin I. (ed) ISBN: 978-953-307-170-1Microsensors. InTechGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Molecular GeneticsLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland OT GaterslebenGermany
  2. 2.PreSens Precision Sensing GmbHRegensburgGermany

Personalised recommendations