Advertisement

Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode

  • Eric S. McLamoreEmail author
  • D. Marshall Porterfield
  • Yinglang Wan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1670)

Abstract

Self-referencing optrodic microsensing is a noninvasive method for measuring oxygen transport into/from tissues. The sensing mechanism is based on fluorescence quenching by molecular oxygen at the tip of a fiber-optic probe, and facilitates microscale spatial mapping and continuous monitoring at 100–350 mHz sampling frequency. Over the last decade, this technique has been applied for plant tissues, including roots, seeds, leaves, and flowers in both liquid and air. Here, we describe the operating principle of self-referencing optrodic microsensing for the study of plant tissues with a specific focus on juvenile roots.

Key words

Oxygen flux Root physiology Optrode Self-referencing 

Notes

Acknowledgments

The authors thank the UF Opportunity Fund for supporting E.S. McLamore, and the following for supporting Y. Wan: National Basic Research Program of China (973 Program 2011CB809103, 2011CB944601), the CAS/SAFEA International Partnership Program for Creative Research Teams (20090491019), the National Natural Science Foundation of China (31000595, 30730009), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-L08, KSCX2-EW-J-1), and the China Postdoctoral Science Foundation. We also thank Dr. Miguel Angel Torres (University of North Carolina, USA.) for providing seeds of atrbohD/F double mutant.

References

  1. 1.
    Clark L, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6(3):189–193PubMedGoogle Scholar
  2. 2.
    Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761CrossRefPubMedGoogle Scholar
  3. 3.
    Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions 1. Plant Physiol 116(4):1403–1412CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kautsky H, Hirsch A (1947) Energie-Umwandlungen an Grenzflächen, IV. Ber Dtsch Chem Ges B 64(10):2677–2683CrossRefGoogle Scholar
  5. 5.
    Bergman I (1968) Rapid-response atmospheric oxygen monitor based on fluorescence quenching. Nature 218:396CrossRefGoogle Scholar
  6. 6.
    HH Hesse (1974), “East Ger. Patent”Google Scholar
  7. 7.
    Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732CrossRefPubMedGoogle Scholar
  8. 8.
    Chaturvedi P et al (2013) Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta An Int J Plant Biol 238(3):599–614Google Scholar
  9. 9.
    Chatni MR, Porterfield DM (2009) Self-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing. Analyst 134(11):2224–2232CrossRefPubMedGoogle Scholar
  10. 10.
    Chatni MR, Li G, Porterfield DM (2009) Frequency-domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference light-emitting diode. Appl Opt 48(29):5528–5536CrossRefPubMedGoogle Scholar
  11. 11.
    Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63(2):614–628CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Reid B, Nuccitelli R, Zhao M (2007) Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc 2(3):661–669CrossRefPubMedGoogle Scholar
  13. 13.
    Nuccitelli R, Jaffe LF (1974) Spontaneous current pulses through developing fucoid eggs. Proc Natl Acad Sci U S A 71(12):4855–4859CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Land SC, Porterfield DM, Sanger RH, Smith PJ (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202(Pt 2):211–218PubMedGoogle Scholar
  15. 15.
    Zheng W et al (2015) Altered glucose metabolism in harvey-ras transformed MCF10A cells. Mol Carcinog 54(2):111–120CrossRefPubMedGoogle Scholar
  16. 16.
    Taguchi M, Ptitsyn A, McLamore ES, Claussen JC (2014) Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 8:403–411CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zheng W et al (2013) 1,25-Dihydroxyvitamin D regulation of glucose metabolism in Harvey-ras transformed MCF10A human breast epithelial cells. J Steroid Biochem Mol Biol 138:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McLamore ES et al (2011) A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 26(5):2237–2245CrossRefPubMedGoogle Scholar
  19. 19.
    Shi J et al (2011) Oscillatory glucose flux in INS 1 pancreatic Î2 cells: a self-referencing microbiosensor study. Anal Biochem 411:185–193CrossRefPubMedGoogle Scholar
  20. 20.
    Yan S et al (2015) MeJA affected root growth by modulation of transmembrane auxin flux in transition zone. J Plant Growth Regul 35:256–265CrossRefGoogle Scholar
  21. 21.
    Vanegas DC, Clark G, Cannon AE, Roux S, Chaturvedi P, McLamore ES (2015) A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 74:37–44CrossRefPubMedGoogle Scholar
  22. 22.
    Porterfield D, Rickus J, Kopelman R (2006) Noninvasive approaches to measuring respiratory patterns using a PtTFPP based phase-lifetime self- referencing oxygen optrode. Proc SPIE:1–10Google Scholar
  23. 23.
    McLamore ES, Jaroch D, Chatni MR, Porterfield DM (2010) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 232(5):1087–1099CrossRefPubMedGoogle Scholar
  24. 24.
    McLamore ES, Zhang W, Porterfield DM, Banks MK (2010) Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. Environ Sci Technol 44(18):7050–7057CrossRefPubMedGoogle Scholar
  25. 25.
    Sanchez BC, Ochoa-Acuña H, Porterfield DM, Sepúlveda MS (2008) Oxygen flux as an indicator of physiological stress in fathead minnow (Pimephales Promelas) embryos: a real-time biomonitoring system of water quality. Environ Sci Technol 42(18):7010–7017CrossRefPubMedGoogle Scholar
  26. 26.
    Xin X, Wan Y, Wang W, Yin G, McLamore ES, Lu X (2013) A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx. Sci Rep 3:3057CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Porterfield D (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 15(22):1186–1196CrossRefGoogle Scholar
  28. 28.
    Mclamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308–5320CrossRefPubMedGoogle Scholar
  29. 29.
    Newman I, Chen S, Porterfield D, Sun J (2012) Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 913:1011–1117Google Scholar
  30. 30.
    McLamore ES et al (2010) A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 189:14–22CrossRefPubMedGoogle Scholar
  31. 31.
    McLamore ES, Porterfield DM, Banks MK (2009) Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnol Bioeng 102(3):791–799CrossRefPubMedGoogle Scholar
  32. 32.
    Chen J et al (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H +-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30(12):1570–1585CrossRefPubMedGoogle Scholar
  33. 33.
    Sun J et al (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149(2):1141–1153CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McLamore ES et al (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Eric S. McLamore
    • 1
    Email author
  • D. Marshall Porterfield
    • 2
    • 3
  • Yinglang Wan
    • 4
    • 5
    • 6
  1. 1.Agricultural and Biological Engineering, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Bindley Bioscience Center, Physiological Sensing FacilityPurdue UniversityWest LafayetteUSA
  3. 3.Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of Horticultural and Landscape ArchitecturePurdue UniversityWest LafayetteUSA
  5. 5.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  6. 6.College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina

Personalised recommendations