Measurements of Electron Partitioning Between Cytochrome and Alternative Oxidase Pathways in Plant Tissues

  • Nestor Fernandez Del-Saz
  • Miquel Ribas-Carbo
  • Gabriel Martorell
  • Alisdair R. Fernie
  • Igor Florez-SarasaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1670)


Plant respiration is characterized by the existence of the alternative oxidase pathway (AOP) that competes with cytochrome oxidase pathway (COP) for the electrons of the ubiquinone pool of the mitochondrial electron transport chain, thus reducing ATP synthesis. The oxygen (O2) isotope fractionation technique is the only available to determine the electron partitioning between the two pathways and their in vivo activities in plant tissues. In this chapter, the basis of the O2 isotope fractionation technique and its derived calculations are carefully explained together with a detailed description of the dual-inlet isotope ratio mass spectrometry (DI-IRMS) system and the protocol developed at the University of Balearic Islands. The key advantages of the DI-IRMS over other systems are highlighted as well as the potential problems of this technique. Among these problems, those associated with leakage, diffusion, and inhibitor treatments are noted and solutions to prevent, detect, and repair these problems are detailed.

Key words

Oxygen isotope fractionation Respiration In vivo mitochondrial electron partitioning Cytochrome oxidase pathway Alternative oxidase pathway 



We would like to thank all the staff at the Serveis Cientifico-Tecnics of the Universitat de les Illes Balears for their help while running the experiments on the IRMS.


  1. 1.
    van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ et al (2011) Regulation of respiration in plants: a role for alternative metabolic pathways. J Plant Physiol 168:1434–1443CrossRefPubMedGoogle Scholar
  2. 2.
    Gupta KJ, Neelwarne B, Mur LAJ (2015) Integrating classical and alternative pathways. In: Gupta KJ, Mur LAJ, Neelwarne B (eds) Alternative respiratory pathways in higher plants. John Wiley and Sons, Oxford, pp 1–26CrossRefGoogle Scholar
  3. 3.
    Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant-mitochondria. Biochim Biophys Acta 1059:121–140CrossRefPubMedGoogle Scholar
  4. 4.
    Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide resistant oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Millar AH, Wiskich JT, Whelan J, Day DA (1993) Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett 329:259–262CrossRefPubMedGoogle Scholar
  6. 6.
    Hoefnagel MHN, Millar AH, Wiskich JT, Day DA (1995) Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys 318:394–400CrossRefPubMedGoogle Scholar
  7. 7.
    Ribas-Carbo M, Berry JA, Yakir D et al (1995) Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol 109:829–837CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Day DA, Krab K, Lambers H et al (1996) The cyanide-resistant oxidase: to inhibit or not to inhibit, that is the question. Plant Physiol 110:1–2CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guy RD, Berry JA, Fogel ML, Hoering TC (1989) Differential fractionation of oxygen isotopes by cyanide resistant and cyanide-sensitive respiration in plants. Planta 177:483–491CrossRefPubMedGoogle Scholar
  10. 10.
    Dawson TE, Brooks PD (2001) Fundamentals of stable isotope chemistry and measurement. In: Unkovich M et al (eds) Stable isotope techniques in the study of biological processes and functioning of ecosystems. Springer, Netherlands, pp 1–18Google Scholar
  11. 11.
    Ribas-Carbo M, Robinson SA, Giles L (2005) The application of the oxygen-isotope technique to assess respiratory pathway partitioning. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem, vol 18. Advances in photosynthesis and respiration series. Springer, Dordrecht, The Netherlands, pp 31–42CrossRefGoogle Scholar
  12. 12.
    Kornfeld A, Horton TW, Yakir D et al (2012) A field-compatible method for measuring alternative respiratory pathway activities in vivo using stable O2 isotopes. Plant Cell Environ 35:1518–1532CrossRefPubMedGoogle Scholar
  13. 13.
    Cheah MH, Millar AH, Myers RC et al (2014) Online oxygen kinetic isotope effects using membrane inlet mass spectrometry can differentiate between oxidases for mechanistic studies and calculation of their contributions to oxygen consumption in whole tissues. Anal Chem 86:5171–5178CrossRefPubMedGoogle Scholar
  14. 14.
    Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ et al (2016) Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell Environ. doi: 10.1111/pce.12776
  15. 15.
    Florez-Sarasa I, Ribas-Carbo M, Del-Saz NF et al (2016) Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytol. doi: 10.1111/nph.14030
  16. 16.
    Miller RE, Grant NM, Giles L et al (2011) In the heat of the night – alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol 189:1013–1026CrossRefPubMedGoogle Scholar
  17. 17.
    Meier IC, Angert A, Falik O et al (2013) Increased root oxygen uptake in pea plants responding to non-self neighbors. Planta 238:577–586CrossRefPubMedGoogle Scholar
  18. 18.
    Slater EC (1973) The mechanism of action of the respiratory inhibitor, antimycin. Biochim Biophys Acta 301:129–154CrossRefPubMedGoogle Scholar
  19. 19.
    Huang L, Cobessi D, Tung EY, Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351:573–597CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Janes HW, Wiest SC (1982) Inhibition of O2 consumption resistant to cyanide and its development by n-propyl gallate and salicylhydroxamic acid. Plant Physiol 70:853–857CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moore AL, Shiba T, Young L et al (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663CrossRefPubMedGoogle Scholar
  22. 22.
    Florez-Sarasa ID, Bouma TJ, Medrano H et al (2007) Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana. Physiol Plant 129:143–151CrossRefGoogle Scholar
  23. 23.
    Florez-Sarasa I, Flexas J, Rasmusson AG et al (2011) In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. Plant Cell Environ 34:1373–1383CrossRefPubMedGoogle Scholar
  24. 24.
    Florez-Sarasa I, Lambers H, Wang X et al (2014) The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant Cell Environ 37:922–928CrossRefPubMedGoogle Scholar
  25. 25.
    Martí MC, Florez-Sarasa I, Camejo D et al (2011) Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum, L.) leaves. J Exp Bot 62:3863–3874CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Florez-Sarasa I, Araújo WL, Wallström SV et al (2012) Light-responsive metabolite and transcript levels are maintained following a dark-adaptation period in leaves of Arabidopsis thaliana. New Phytol 195:136–148CrossRefPubMedGoogle Scholar
  27. 27.
    Ribas-Carbo M, Lennon AM, Robinson SA et al (1997) The regulation of the electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria. Plant Physiol 113:903–911CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Angert A, Luz B (2001) Fractionation of oxygen isotopes by root respiration: implications for the isotopic composition of atmospheric O2. Geochim Cosmochim Acta 65:1695–1701CrossRefGoogle Scholar
  29. 29.
    Møller IM, Bérczi A, van der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol Plant 72:642–649CrossRefGoogle Scholar
  30. 30.
    Whelan J, Millar AH, Day DA (1996) The alternative oxidase is encoded in a multigene family in soybean. Planta 198:197–201CrossRefPubMedGoogle Scholar
  31. 31.
    Considine MJ, Holtzapffel RC, Day DA et al (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ribas-Carbo M, Robinson SA, Meler-Gonzàlez MA et al (2000) Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons. Plant Cell Environ 23:983–989CrossRefGoogle Scholar
  33. 33.
    Umbach AL, Gonzàlez-Meler MA, Sweet CR, Siedow JN (2002) Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. Biochim Biophys Acta 1554:118–128CrossRefPubMedGoogle Scholar
  34. 34.
    Costa JH, McDonald AE, Arnholdt-Schmitt B, Fernandes de Melo D (2014) A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion 19:172–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Nestor Fernandez Del-Saz
    • 1
  • Miquel Ribas-Carbo
    • 1
  • Gabriel Martorell
    • 2
  • Alisdair R. Fernie
    • 4
  • Igor Florez-Sarasa
    • 3
    Email author
  1. 1.Grup de Recerca en Biologia de les Plantes en Condicions MediterraniesUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Serveis Científico-TècnicsUniversitat de les Illes BalearsPalma de MallorcaSpain
  3. 3.Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-GolmGermany
  4. 4.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations