Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants

  • Rebeca Patricia Omena-Garcia
  • Wagner L. Araújo
  • Yves Gibon
  • Alisdair R. FernieEmail author
  • Adriano Nunes-Nesi
Part of the Methods in Molecular Biology book series (MIMB, volume 1670)


Mitochondria are vital cytoplasmic organelle of eukaryotic cells responsible for oxidative energy metabolism and the synthesis of intermediates utilized in various other metabolic pathways. The functions of mitochondrion are the oxidation of organic acids by the tricarboxylic acid (TCA) cycle and the synthesis of ATP by the oxidative phosphorylation in the mitochondrial electron transport chain. The TCA cycle is composed by a set of enzymes that are essential for optimal functioning of the primary carbon metabolism in plants. The activity of each TCA cycle enzyme in plants may vary according to cell type, plant tissue, stage of plant development, and the environment. Here, we describe current methods used for the determination of the TCA cycle enzyme activities in different plant tissues.

Key words

Activation assays Mitochondrial enzyme activity Tricarboxylic acid (TCA) cycle enzyme assays 



Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq- to W.L.A.), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Max Planck Society to A.N.N. and W.L.A. Research fellowships granted by CNPq to A.N.N. and W.L.A. as well as scholarship granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to R.P.O.G. are also gratefully acknowledged.

Conflict of interest: The authors declare that they have no conflict of interest.


  1. 1.
    Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261. doi: 10.1016/j.pbi.2004.03.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Araújo WL, Nunes-Nesi A, Nikoloski Z et al (2012) Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ 35:1–21. doi: 10.1111/j.1365-3040.2011.02332.x
  3. 3.
    Millar AH, Whelan J, Soole KL et al (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104. doi: 10.1146/annurev-arplant-042110-103857 CrossRefPubMedGoogle Scholar
  4. 4.
    Sweetlove LJ, Beard KFM, Nunes-Nesi A et al (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470. doi: 10.1016/j.tplants.2010.05.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Schmidtmann E, König A-C, Orwat A et al (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol Plant 7:156–169. doi: 10.1093/mp/sst144 CrossRefPubMedGoogle Scholar
  6. 6.
    Daloso DM, Müller K, Obata T et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci 112. doi: 10.1073/pnas.1424840112
  7. 7.
    Bocobza SE, Malitsky S, Araújo WL et al (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25:288–307. doi: 10.1105/tpc.112.106385 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Araújo WL, Nunes-Nesi A, Trenkamp S et al (2008) Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol 148:1782–1796. doi: 10.1104/pp.108.126219 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Henkes S, Sonnewald U, Badur R et al (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13(3):535–552CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422(3):405–421CrossRefPubMedGoogle Scholar
  11. 11.
    Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049. doi: 10.1046/j.1432-1033.2003.03469.x CrossRefPubMedGoogle Scholar
  12. 12.
    Randall DD, Rubin PM, Fenko M (1977) Plant pyruvate dehydrogenase complex purification, characterization and regulation by metabolites and phosphorylation. Biochim Biophys Acta 485:336–349. doi: 10.1016/0005-2744(77)90169-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Randall DD, Miernyk J (2012) 10 the mitochondrial pyruvate dehydrogenase complex. Enzymes of primary. Metabolism 3:175Google Scholar
  14. 14.
    Gibon Y, Blaesing OE, Hannemann J et al (2004) A robot-based platform to measure multiple enzyme activities in arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325. doi: 10.1105/tpc.104.025973 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cox GF, Davies DD (1967) Nicotinamide–adenine dinucleotide-specific isocitrate dehydrogenase from pea mitochondria: purification and properties. Biochem J 105(2):729–734CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Araújo WL, Nunes-Nesi A, Osorio S et al (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23:600–627. doi: 10.1105/tpc.110.081224 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jenner HL, Winning BM, Millar AH et al (2001) NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol 126(3):1139–1149CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Studart-Guimarães C, Gibon Y, Frankel N et al (2005) Identification and characterisation of the α and β subunits of succinyl coa ligase of tomato. Plant Mol Biol 59:781–791. doi: 10.1007/s11103-005-1004-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Voll LM, Zell MB, Engelsdorf T et al (2012) Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol 195:189–202. doi: 10.1111/j.1469-8137.2012.04129.x CrossRefPubMedGoogle Scholar
  20. 20.
    Murcha MW, Whelan J (2015) Isolation of intact mitochondria from the model plant species Arabidopsis thaliana and Oryza sativa. In: Whelan J, Murcha WM (eds) Plant mitochondria: methods and protocols. Springer New York, New York, NY, pp 1–12. doi: 10.1007/978-1-4939-2639-8_1 Google Scholar
  21. 21.
    Sweetlove LJ, Taylor NL, Leaver CJ (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. In: Leister D, Herrmann JM (eds) Mitochondria: practical protocols. Humana Press, Totowa, NJ, pp 125–136. doi: 10.1007/978-1-59745-365-3_9 CrossRefGoogle Scholar
  22. 22.
    Tronconi MA, Fahnenstich H, Gerrard Weehler MC et al (2008) Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146:1540–1552. doi: 10.1104/pp.107.114975 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Rebeca Patricia Omena-Garcia
    • 1
  • Wagner L. Araújo
    • 1
  • Yves Gibon
    • 2
  • Alisdair R. Fernie
    • 3
    Email author
  • Adriano Nunes-Nesi
    • 1
  1. 1.Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosaBrazil
  2. 2.UMR 1332 Biologie du Fruit et Pathologie, INRAVillenave d’ OrnonFrance
  3. 3.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations