Skip to main content

Agrobacterium-Mediated Sorghum Transformation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Agrobacterium-mediated plant transformation is commonly used in crop genome modification. An optimized sorghum transformation protocol we developed is described here. Using this protocol, the transformation frequency of sorghum inbred TX430 is over 10% with Agrobacterium strain LBA4404 and 33% with Agrobacterium strain AGL1. Two different selection marker genes, moPAT and PMI, were used in this protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhao ZY, Cai T, Tagliani L et al (2000) Agrobacterium mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  2. Pandey AK, Bhat BV, Balakrishna D et al (2010) Genetic transformation of sorghum (Sorghum bicolor (L.), Moench). Int J Biotechnol Biochem 6:45–53

    Google Scholar 

  3. Kumar T, Howe A, Sato S et al (2013) Sorghum transformation: overview and utility, Chapter 10. In: Paterson AH (ed) Genomics of the Saccharinae, plant genetics and genomics: crops and models 11. Springer, New York, NY, pp 205–221

    Chapter  Google Scholar 

  4. Do PT, Zhang ZJ (2015) Sorghum transformation: achievements, challenges, and perspectives. In: Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, NY, pp 291–312

    Google Scholar 

  5. Liu G, Ian GD (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu E, Lenderts B, Glassman K et al (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18

    Article  PubMed  Google Scholar 

  7. Cho MJ, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    Article  CAS  Google Scholar 

  8. Bregitzer P, Campbell RD, Dahleen LS et al (2000) Development of transformation systems for elite barley cultivars. Barley Genet Newsl 30:10

    Google Scholar 

  9. Zhao ZY (2006) Chapter 19. Sorghum (Sorghum bicolor L.) In: Wang K (ed) Methods in molecular biology, 343, Agrobacterium protocols, vol 1, 2nd edn. Humana Press Inc., Totowa, NJ, pp 233–244

    Chapter  Google Scholar 

  10. Hadley HH (1953) Cytological relationships between Sorghum vulgare and S. halepense. Agron J 45:139–143

    Article  Google Scholar 

  11. Baker HG (1972) Migrations of weeds. In: Valentine DH (ed) Taxonomy, phytogeography and evolution. Academic Press, London, pp 327–347

    Google Scholar 

  12. Doggett H (1988) Sorghum. In: Tropical agricultural series, 2nd edn. Longman Scientific, Essex

    Google Scholar 

  13. Defelice SM (2006) Shattercane, Sorghum Bicolor (L.) Moench Ssp. Drummondii (Nees ex Steud.) De Wet ex Davidse—Black sheep of the family. Weed Technol 20(4):1076–1083. doi:10.1614/WT-06-051.1

    Article  Google Scholar 

  14. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  15. Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    Article  CAS  PubMed  Google Scholar 

  16. Komari T, Hiei Y, Saito Y et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  PubMed  Google Scholar 

  17. US patent no. 6,096,947

    Google Scholar 

  18. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  19. Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase (manA) gene of Escherichia coli. Gene 32:41–48

    Article  CAS  PubMed  Google Scholar 

  20. Botterman J, Gosselé V, Thoen C et al (1991) Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Gene 102:33–37

    Article  CAS  PubMed  Google Scholar 

  21. Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zastrow-Hayes GM, Lin HN, Sigmund AL et al (2015) Southern-by-sequencing: a robust screening approach for molecular characterization of genetically modified crops. Plant Genome 8(1):1–15. doi:10.3835/plantgenome2014.08.0037.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank our co-workers, Brian Lenderts, Kimberly Glassman, Maya Berezowska-Kaniewska, Heather Christensen, Tracy Asmus, Shifu Zhen, Uyen Chu, and Myeong-Je Cho for their contributions of the transformation and analysis work. This manuscript was critically reviewed by Dr. Doane Chilcoat and Dr. Todd Jones. Sorghum transformation with the PMI selection marker gene published in 2014 [6] was performed as part of a humanitarian project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Yu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wu, E., Zhao, ZY. (2017). Agrobacterium-Mediated Sorghum Transformation. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics