Advertisement

Single-Cell CNV Detection in Human Neuronal Nuclei

  • Margaret B. Wierman
  • Ian E. Burbulis
  • William D. Chronister
  • Stefan Bekiranov
  • Michael J. McConnell
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

Genomic mosaicism is prevalent throughout human somatic tissues and is much more common than previously thought. Here, we describe step-by-step methods to isolate neuronal nuclei from human brain and identify megabase-scale copy number variants (CNVs) in single nuclei. The approach detailed herein includes use of CellRaft technology for single-nucleus isolation, the PicoPLEX approach to whole-genome amplification and library preparation, and a pooled library purification protocol, termed Gel2Gel, which has been developed in our laboratory. These methods are focused toward neuroscience research, but are adaptable to many biomedical fields.

Key words

Copy number variation Whole-genome amplification Single-cell genome sequencing Neurons And somatic mosaicism 

References

  1. 1.
    Stern C (1931) Analyse eines Mosaikindividuums bei Drosophila melanogaster. Bio Zentr 51:194–199Google Scholar
  2. 2.
    Stern C (1936) Somatic crossing over and segregation in Drosophila Melanogaster. Genetics 21(6):625–730PubMedPubMedCentralGoogle Scholar
  3. 3.
    Stern C, Doan D (1936) A cytogenetic demonstration of crossing-over between X- and Y- chromosomes in the male Drosophila Melanogaster. Proc Natl Acad Sci U S A 22(11):649–654CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stern C, Rentschler V (1936) The effect of temperature on the frequency of somatic crossing-over in Drosophila Melanogaster. Proc Natl Acad Sci U S A 22(7):451–453CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cotterman CW (1956) Somatic mosaicism for antigen A2. Acta Genet Stat Med 6(4):520–521PubMedGoogle Scholar
  6. 6.
    Levan A (1956) Chromosome studies on some human tumors and tissues of normal origin, grown in vivo and in vitro at the Sloan-Kettering institute. Cancer 9(4):648–663CrossRefPubMedGoogle Scholar
  7. 7.
    Campbell IM, Shaw CA, Stankiewicz P, Lupski JR (2015) Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 31(7):382–392. doi: 10.1016/j.tig.2015.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campbell IM, Yuan B, Robberecht C, Pfundt R, Szafranski P, McEntagart ME, Nagamani SC, Erez A, Bartnik M, Wisniowiecka-Kowalnik B, Plunkett KS, Pursley AN, Kang SH, Bi W, Lalani SR, Bacino CA, Vast M, Marks K, Patton M, Olofsson P, Patel A, Veltman JA, Cheung SW, Shaw CA, Vissers LE, Vermeesch JR, Lupski JR, Stankiewicz P (2014) Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 95(2):173–182. doi: 10.1016/j.ajhg.2014.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ, Cullen M, Epstein CG, Burdett L, Dean MC, Chatterjee N, Sampson J, Chung CC, Kovaks J, Gapstur SM, Stevens VL, Teras LT, Gaudet MM, Albanes D, Weinstein SJ, Virtamo J, Taylor PR, Freedman ND, Abnet CC, Goldstein AM, Hu N, Yu K, Yuan JM, Liao L, Ding T, Qiao YL, Gao YT, Koh WP, Xiang YB, Tang ZZ, Fan JH, Aldrich MC, Amos C, Blot WJ, Bock CH, Gillanders EM, Harris CC, Haiman CA, Henderson BE, Kolonel LN, Le Marchand L, McNeill LH, Rybicki BA, Schwartz AG, Signorello LB, Spitz MR, Wiencke JK, Wrensch M, Wu X, Zanetti KA, Ziegler RG, Figueroa JD, Garcia-Closas M, Malats N, Marenne G, Prokunina-Olsson L, Baris D, Schwenn M, Johnson A, Landi MT, Goldin L, Consonni D, Bertazzi PA, Rotunno M, Rajaraman P, Andersson U, Beane Freeman LE, Berg CD, Buring JE, Butler MA, Carreon T, Feychting M, Ahlbom A, Gaziano JM, Giles GG, Hallmans G, Hankinson SE, Hartge P, Henriksson R, Inskip PD, Johansen C, Landgren A, McKean-Cowdin R, Michaud DS, Melin BS, Peters U, Ruder AM, Sesso HD, Severi G, Shu XO, Visvanathan K, White E, Wolk A, Zeleniuch-Jacquotte A, Zheng W, Silverman DT, Kogevinas M, Gonzalez JR, Villa O, Li D, Duell EJ, Risch HA, Olson SH, Kooperberg C, Wolpin BM, Jiao L, Hassan M, Wheeler W, Arslan AA, Bueno-de-Mesquita HB, Fuchs CS, Gallinger S, Gross MD, Holly EA, Klein AP, LaCroix A, Mandelson MT, Petersen G, Boutron-Ruault MC, Bracci PM, Canzian F, Chang K, Cotterchio M, Giovannucci EL, Goggins M, Hoffman Bolton JA, Jenab M, Khaw KT, Krogh V, Kurtz RC, McWilliams RR, Mendelsohn JB, Rabe KG, Riboli E, Tjonneland A, Tobias GS, Trichopoulos D, Elena JW, Yu H, Amundadottir L, Stolzenberg-Solomon RZ, Kraft P, Schumacher F, Stram D, Savage SA, Mirabello L, Andrulis IL, Wunder JS, Patino Garcia A, Sierrasesumaga L, Barkauskas DA, Gorlick RG, Purdue M, Chow WH, Moore LE, Schwartz KL, Davis FG, Hsing AW, Berndt SI, Black A, Wentzensen N, Brinton LA, Lissowska J, Peplonska B, McGlynn KA, Cook MB, Graubard BI, Kratz CP, Greene MH, Erickson RL, Hunter DJ, Thomas G, Hoover RN, Real FX, Fraumeni JF Jr, Caporaso NE, Tucker M, Rothman N, Perez-Jurado LA, Chanock SJ (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651–658. doi: 10.1038/ng.2270 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lupski JR (2013) Genetics. Genome mosaicism-one human, multiple genomes. Science 341(6144):358–359. doi: 10.1126/science.1239503 CrossRefPubMedGoogle Scholar
  11. 11.
    Stern C (1968) Genetic mosaics in animals and man. In: Genetic mosaics and other essays. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  12. 12.
    De S (2011) Somatic mosaicism in healthy human tissues. Trends Genet 27(6):217–223. doi: 10.1016/j.tig.2011.03.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Gottlieb B, Beitel LK, Trifiro MA (2001) Somatic mosaicism and variable expressivity. Trends Genet 17(2):79–82CrossRefPubMedGoogle Scholar
  14. 14.
    Hall JG (1988) Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet 43(4):355–363PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K, Kosyakova N, Ewers E, Nelle H, Liehr T, Bhatt S, Thoma K, Gebhart E, Wilhelm S, Fahsold R, Volleth M, Weise A (2010) The human genome puzzle—the role of copy number variation in somatic mosaicism. Curr Genomics 11(6):426–431. doi: 10.2174/138920210793176047 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK (2014) The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 20(4):571–581. doi: 10.1093/humupd/dmu016 CrossRefPubMedGoogle Scholar
  17. 17.
    Thibodeau IL, Xu J, Li Q, Liu G, Lam K, Veinot JP, Birnie DH, Jones DL, Krahn AD, Lemery R, Nicholson BJ, Gollob MH (2010) Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation 122(3):236–244. doi: 10.1161/CIRCULATIONAHA.110.961227 CrossRefPubMedGoogle Scholar
  18. 18.
    Vig BK (1978) Somatic mosaicism in plants with special reference to somatic crossing over. Environ Health Perspect 27:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3(10):748–758. doi: 10.1038/nrg906 CrossRefPubMedGoogle Scholar
  20. 20.
    Insel TR (2014) Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 19(2):156–158. doi: 10.1038/mp.2013.168 CrossRefPubMedGoogle Scholar
  21. 21.
    Erwin JA, Paquola AC, Singer T, Gallina I, Novotny M, Quayle C, Bedrosian TA, Alves FI, Butcher CR, Herdy JR, Sarkar A, Lasken RS, Muotri AR, Gage FH (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591. doi: 10.1038/nn.4388 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, D’Gama AM, Cai X, Luquette LJ, Lee E, Park PJ, Walsh CA (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94–98. doi: 10.1126/science.aab1785 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A, Walsh CA (2014) Single cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289. doi: 10.1016/j.celrep.2014.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637. doi: 10.1126/science.1243472 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Knouse KA, Wu J, Amon A (2016) Assessment of megabase-scale somatic copy number variation using single cell sequencing. Genome Res 26(3):376–384. doi: 10.1101/gr.198937.115 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hawkins TL, Detter JC, Richardson PM (2002) Whole genome amplification-applications and advances. Curr Opin Biotechnol 13(1):65–67CrossRefPubMedGoogle Scholar
  27. 27.
    Hou Y, Wu K, Shi X, Li F, Song L, Wu H, Dean M, Li G, Tsang S, Jiang R, Zhang X, Li B, Liu G, Bedekar N, Lu N, Xie G, Liang H, Chang L, Wang T, Chen J, Li Y, Zhang X, Yang H, Xu X, Wang L, Wang J (2015) Comparison of variations detection between whole genome amplification methods used in single cell resequencing. Gigascience 4:37. doi: 10.1186/s13742-015-0068-3 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Tezak Z, Philip R, Bijwaard K, Fuscoe JC (2012) Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 13:217. doi: 10.1186/1471-2164-13-217 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pugh TJ, Delaney AD, Farnoud N, Flibotte S, Griffith M, Li HI, Qian H, Farinha P, Gascoyne RD, Marra MA (2008) Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res 36(13):e80. doi: 10.1093/nar/gkn378 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Insel TR, Gogtay N (2014) National Institute of Mental Health clinical trials: new opportunities, new expectations. JAMA Psychiat 71(7):745–746. doi: 10.1001/jamapsychiatry.2014.426 CrossRefGoogle Scholar
  31. 31.
    Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397. doi: 10.1176/appi.ajp.2014.14020138 CrossRefPubMedGoogle Scholar
  32. 32.
    Chung JY, Insel TR (2014) Mind the gap: neuroscience literacy and the next generation of psychiatrists. Acad Psychiatry 38(2):121–123. doi: 10.1007/s40596-014-0054-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Damianov A, Black DL (2010) Autoregulation of fox protein expression to produce dominant negative splicing factors. RNA 16(2):405–416. doi: 10.1261/rna.1838210 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as fox-3, a new member of the fox-1 gene family of splicing factors. J Biol Chem 284(45):31052–31061. doi: 10.1074/jbc.M109.052969 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lucas CH, Calvez M, Babu R, Brown A (2014) Altered subcellular localization of the NeuN/Rbfox3 RNA splicing factor in HIV-associated neurocognitive disorders (HAND). Neurosci Lett 558:97–102. doi: 10.1016/j.neulet.2013.10.037 CrossRefPubMedGoogle Scholar
  36. 36.
    Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99(8):5261–5266. doi: 10.1073/pnas.082089499 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J (2012) Genome-wide copy number analysis of single cells. Nat Protoc 7(6):1024–1041. doi: 10.1038/nprot.2012.039 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J (2016) Corrigendum: genome-wide copy number analysis of single cells. Nat Protoc 11(3):616. doi: 10.1038/nprot0316.616b CrossRefPubMedGoogle Scholar
  39. 39.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single cell sequencing. Nature 472(7341):90–94. doi: 10.1038/nature09807 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. doi: 10.1126/science.1229164 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR (2014) A quantitative comparison of single cell whole genome amplification methods. PLoS One 9(8):e105585. doi: 10.1371/journal.pone.0105585 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gawad C, Koh W, Quake SR (2016) Single cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188. doi: 10.1038/nrg.2015.16 CrossRefPubMedGoogle Scholar
  43. 43.
    Blainey PC (2013) The future is now: single cell genomics of bacteria and archaea. FEMS Microbiol Rev 37(3):407–427. doi: 10.1111/1574-6976.12015 CrossRefPubMedGoogle Scholar
  44. 44.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-Wheeler transform. Bioinformatics 26(5):589–595. doi: 10.1093/bioinformatics/btp698 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi: 10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi: 10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, Wigler M, Schatz MC (2015) Interactive analysis and assessment of single cell copy-number variations. Nat Methods 12(11):1058–1060. doi: 10.1038/nmeth.3578 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Seshan VE, Olshen A (2016) DNAcopy: DNA copy number data analysis. (R package). 1.48.0. Edn.Google Scholar
  49. 49.
    Lai D, Ha G, Shah S (2016) HMMcopy: copy number prediction with correction for GC and mappability bias for HTS data (R package). 1.16.0. Edn., BioconductorGoogle Scholar
  50. 50.
    Nilsen G, Liestol K, Van Loo P, Moen Vollan HK, Eide MB, Rueda OM, Chin SF, Russell R, Baumbusch LO, Caldas C, Borresen-Dale AL, Lingjaerde OC (2012) Copynumber: efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13:591. doi: 10.1186/1471-2164-13-591 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Margaret B. Wierman
    • 1
  • Ian E. Burbulis
    • 1
    • 2
  • William D. Chronister
    • 1
  • Stefan Bekiranov
    • 1
  • Michael J. McConnell
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Virginia, School of MedicineCharlottesvilleUSA
  2. 2.Universidad San Sebastian, Escuela de MedicinaPuerto MonttChile

Personalised recommendations