Estimation of LINE-1 Copy Number in the Brain Tissue and Isolated Neuronal Nuclei

  • Miki BundoEmail author
  • Tadafumi Kato
  • Kazuya Iwamoto
Part of the Neuromethods book series (NM, volume 131)


The mammalian brain consists of heterogeneous cell types, including neurons and various glial cells. Because somatic mutations that include long interspersed element-1 (LINE-1) retrotranspositions are usually rare, the targeting of specific brain cell types in genomic analyses of these mutations is critical. We previously reported that isolated neuronal nuclei from the prefrontal cortex of patients with schizophrenia exhibit increased numbers of LINE-1 copies. In this chapter, we describe practical methods for isolating neuronal nuclei from frozen brain tissue and cultured cells, extracting genomic DNA, and estimating LINE-1 copy numbers with quantitative reverse transcription-polymerase chain reactions.

Key words

Psychiatric disorder Postmortem brain Retrotransposon Retrotransposition Neuronal nuclei (NeuN) 


  1. 1.
    Cardno AG, Marshall EJ, Coid B et al (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56:162–168CrossRefPubMedGoogle Scholar
  2. 2.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Cnv, Schizophrenia Working Groups of the Psychiatric Genomics Consortium, Psychosis Endophenotypes International Consortium (2017) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49:27–35Google Scholar
  4. 4.
    Purcell SM, Moran JL, Fromer M et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fromer M, Pocklington AJ, Kavanagh DH et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093CrossRefPubMedGoogle Scholar
  7. 7.
    Lee JH, Huynh M, Silhavy JL et al (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941–945CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Poduri A, Evrony GD, Cai X et al (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74:41–48CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lim JS, Kim WI, Kang HC et al (2015) Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 21:395–400CrossRefPubMedGoogle Scholar
  10. 10.
    Nakashima M, Saitsu H, Takei N et al (2015) Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann Neurol 78:375–386CrossRefPubMedGoogle Scholar
  11. 11.
    Muotri AR, Chu VT, Marchetto MC et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910CrossRefPubMedGoogle Scholar
  12. 12.
    Kuwabara T, Hsieh J, Muotri A et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Muotri AR, Marchetto MC, Coufal NG et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Coufal NG, Garcia-Perez JL, Peng GE et al (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108:20382–20387CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bundo M, Toyoshima M, Okada Y et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313CrossRefPubMedGoogle Scholar
  16. 16.
    Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Coufal NG, Garcia-Perez JL, Peng GE et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Iwamoto K, Bundo M, Ueda J et al (2011) Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res 21:688–696CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bundo M, Kato T, Iwamoto K (2016) Cell type-specific DNA methylation analysis in neurons and glia. Springer, New York, pp 115–123Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Molecular Brain Science, Graduate School of Medical SciencesKumamoto UniversityChuo-kuJapan
  2. 2.PRESTO, Japan Science and Technology AgencyChiyodakuJapan
  3. 3.Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science InstituteWakoJapan

Personalised recommendations