The Analysis of Ethnic Mixtures

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1666)

Abstract

Population of ethnic mixtures can be useful in genetic studies. Admixture mapping, or mapping by admixture linkage disequilibrium (MALD), is specially developed for admixed populations and can supplement traditional genome-wide association analyses in the search for genetic variants underlying complex traits. Admixture mapping tests the association between a trait and locus-specific ancestries. The locus-specific ancestries are in linkage disequilibrium (LD), which is generated by an admixture process between genetically distinct ancestral populations. Because of the highly correlated-locus specific ancestries, admixture mapping performs many fewer independent tests across the genome than current genome-wide association analysis. Therefore, admixture mapping can be more powerful because it reduces the penalty due to multiple tests. In this chapter, we introduce the theory behind admixture mapping and explain how to conduct the analysis in practice.

Key words

Admixture mapping Population admixture Ancestry information marker (AIM) Hidden Markov model 

Notes

Acknowledgment

This work was supported by a grant from the National Human Genome Research Institute (HG003054).

References

  1. 1.
    Risch NJ (1992) Mapping genes for complex disease using association studies with recently admixed populations. Am J Hum Genet 51:13Google Scholar
  2. 2.
    McKeigue PM (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet 63:241–251CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhu X, Cooper RS, Elston RC (2004) Linkage analysis of a complex disease through use of admixed populations. Am J Hum Genet 74:1136–1153CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhu X, Zhang S, Tang H, Cooper R (2006) A classical likelihood based approach for admixture mapping using EM algorithm. Hum Genet 120:431–445CrossRefPubMedGoogle Scholar
  5. 5.
    Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74:979–1000CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM (2004) Design and analysis of admixture mapping studies. Am J Hum Genet 74:965–978CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Montana G, Pritchard JK (2004) Statistical tests for admixture mapping with case-control and cases-only data. Am J Hum Genet 75:771–789CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang C, Chen K, Seldin MF, Li H (2004) A hidden Markov modeling approach for admixture mapping based on case-control data. Genet Epidemiol 27:225–239CrossRefPubMedGoogle Scholar
  9. 9.
    Zhu X, Tang H, Risch N (2008) Admixture mapping and the role of population structure for localizing disease genes. Adv Genet 60:547–569PubMedGoogle Scholar
  10. 10.
    Sha Q, Zhang X, Zhu X, Zhang S (2006) Analytical correction for multiple testing in admixture mapping. Hum Hered 62:55–63CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu X, Zhang S, Zhao H, Cooper RS (2002) Association mapping, using a mixture model for complex traits. Genet Epidemiol 23(2):181–196CrossRefPubMedGoogle Scholar
  12. 12.
    Basu A, Tang H, Arnett D, CC G, Mosley T et al (2009) Admixture mapping of quantitative trait loci for BMI in African Americans: evidence for loci on chromosomes 3q, 5q, and 15q. Obesity (Silver Spring) 17:1226–1231Google Scholar
  13. 13.
    Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, Tayo B, Adeyemo A, Sun YV, Li Y et al (2011) Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum Mol Genet 20(11):2285–2295CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tang H, Coram M, Wang P, Zhu X, Risch N (2006) Reconstructing genetic ancestry blocks in admixed individuals. Am J Hum Genet 79:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sundquist A, Fratkin E, Do CB, Batzoglou S (2008) Effect of genetic divergence in identifying ancestral origin using HAPAA. Genome Res 18:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sankararaman S, Sridhar S, Kimmel G, Halperin E (2008) Estimating local ancestry in admixed populations. Am J Hum Genet 82:290–303CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  18. 18.
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  19. 19.
    Long JC (1991) The genetic structure of admixed populations. Genetics 127(2):417–428PubMedPubMedCentralGoogle Scholar
  20. 20.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  21. 21.
    Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL et al (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319(5866):1100–1104CrossRefPubMedGoogle Scholar
  23. 23.
    Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, Rodriguez-Cintron W, Chapela R, Ford JG, Avila PC et al (2012) Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28(10):1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pasaniuc B, Sankararaman S, Kimmel G, Halperin E (2009) Inference of locus-specific ancestry in closely related populations. Bioinformatics 25(12):i213–i221CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brisbin A, Bryc K, Byrnes J, Zakharia F, Omberg L, Degenhardt J, Reynolds A, Ostrer H, Mezey JG, Bustamante CD (2012) PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum Biol 84(4):343–364CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bowden DW, An SS, Palmer ND, Brown WM, Norris JM, Haffner SM, Hawkins GA, Guo X, Rotter JI, Chen YD et al (2010) Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet 19(20):4112–4120CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhu X, Feng T, Li Y, Lu Q, Elston RC (2010) Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol 34(2):171–187CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang H, Zhu X (2014) De novo mutations discovered in 8 Mexican American families through whole genome sequencing. BMC Proc 8(Suppl 1 Genetic Analysis Workshop 18 Vanessa Olmo):S24CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13(8):565–575CrossRefPubMedGoogle Scholar
  31. 31.
    O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O et al (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43(9):860–863CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H (2016) Local ancestry inference and its implication in searching for selection evidence in recent admixed population. Ph.D. dissertation, Case Western Reserve UniversityGoogle Scholar
  35. 35.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang H, Choudhry S, Mei R, Morgan M, Rodriguez-Cintron W et al (2007) Recent genetic selection in the ancestral admixture of Puerto Ricans. Am J Hum Genet 81:626–633CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhu X, Cooper RS (2007) Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PLoS ONE 2:e1244CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang YJ, Tayo BO, Bandyopadhyay A, Wang H, Feng T, Franceschini N, Tang H, Gao J, Sung YJ, Consortium CB et al (2014) The association of the vanin-1 N131S variant with blood pressure is mediated by endoplasmic reticulum-associated degradation and loss of function. PLoS Genet 10:e1004641CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ et al (2004) A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet 74:1001–1013CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004CrossRefPubMedGoogle Scholar
  41. 41.
    Qin H, Zhu X (2012) Power comparison of admixture mapping and direct association analysis in genome-wide association studies. Genet Epidemiol 36:235–243CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95:221–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Division of Sleep and Circadian DisordersBrigham and Women’s HospitalBostonUSA
  3. 3.Division of Sleep MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations